首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural and chemically modified zeolites from the Slovak Republic and Ukraine have been investigated as the adsorbents for the uptake of Cr(III). Model water solution of low radioactivity was used. The adsorption and desorption kinetics of chromium were established with the gradual radioexchange technique (tracer 51Cr) and flame AAS. The effect of the factors studied are examined and explained. The sorption coefficient , distribution coefficient K D , sorption capacity , sorption rate S, and leachability of Cr were calculated in neutral, alkaline and acidic aqueous solutions. The sorption capacity of the modified zeolites was found to be greater by a factor of 2 to 16 than that of the unmodified ones depending on the modifying solution applied. The leachability of chromium from loaded zeolites into the neutral solution was negligible. The leachability into alkaline and acidic solutions increased over 40%.  相似文献   

2.
 Squaric acid (1,2-dihydroxy-3,4-diketo-cyclobutene) is used in a specific reaction with Fe(III) for the spectrophotometric determination of Fe(III) and total iron content. The optimization of the experimental parameters leads to the establishment of a simple, fast and accurate analytical method. The analytical procedure includes mixing ammonium squarate (40 mM), prepared in a phthalate buffer solution of pH 2.7, with the sample and measuring the absorbance at 515 nm. The molar absorptivity of the colored product is 3.95×103 L·mol−1·cm−1, at 515 nm. Calibration graphs for Fe(III) are rectilinear for 0.5–20 mgL−1, with a detection limit of 0.3 mgL−1 and r.s.d. not exceeding 2.5%, for five replicates of a 3.0 mgL−1 standard solution. The method has been successfully applied to the determination of iron (III) and the total iron content after quantitative oxidation of iron (II). The results for several analyzed samples when compared with those acquired by using the FAAS technique, were found to be in satisfactory agreement. Author for correspondence: University of Ioannina, Department of Chemistry, Laboratory of Analytical Chemistry, Ioannina 451 10, Greece. E-mail: panavelt@cc.uoi.gr Received July 27, 2002; accepted December 20, 2002 Published online April 11, 2003  相似文献   

3.
The sorption behavior of a newly synthesized silica gel sorbent with thioetheric sites (STS) towards microgram levels of Au(III), Pt(IV) and Pd(II) was studied. Au(III) is quantitatively (>95%) sorbed in the pH region of 1–9. The sorption of Pt(IV) starts at pH 1 and does not exceed 25% in the entire pH region examined. The sorption of Pd(II) starts at pH 7 and reaches 80% at pH 9. The sorption of Au(III) on STS at pH 1 is not affected by milligram amounts of Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) or Co(II). Au(III) is quantitatively eluted with a 5% aqueous solution of thiourea. The adsorption capacity of STS towards Au(III) is 195 mg g−1. The detection limit (DL) of Au(III) (3σ, n = 9) is 25 ng mL−1. The RSD at a level of 10 × DL is about 2%. Solid-phase extraction of trace amounts of Au(III) on the STS sorbent, followed by its flame AAS determination in the eluate was applied to the determination of gold in geological samples. The results obtained for the gold content in the samples were in good agreement with those of the ICP-AES analysis.  相似文献   

4.
5.
The electrochemical properties of thionine dye adsorbed into ZSM-5 and HZSM-5 zeolites (TH/ZSM-5, TH/HZSM-5) are studied in 0.5 M KCl solution. The dye is strongly retained and not easily leached from the zeolites matrix. The samples are incorporated into the carbon paste electrode (TH/ZSM-5/P, TH/HZSM-5/P) for cyclic voltammetric measurements. The redox reactions of thionine incorporated into ZSM-5 zeolite contain a quasi-reversible, two-electron one proton in the pH range 1 to 10, but thionine-loaded HZSM-5 zeolite undergoes a quasi-reversible two-electron two-protons redox reaction under acidic conditions and a one proton two-electron redox reaction takes place under basic conditions. The separation of the anodic and cathodic potentials (E p) is high in thionine-loaded zeolites (>100) with respect to the solution of thionine (E p = 34 for ZSM-5/P and 36 mV for HZSM-5/P), indicating that there are strong interaction between thionine molecules and the zeolites. The midpoint potentials (E m) for TH/ZSM-5/P and TH/HZSM-5/P are −0.203 and −0.381 V, respectively. However, the midpoint potentials for the solution of thionine for the electrode system of ZSM-5/P and HZSM-5/P are −0.335 and −0.407 V, respectively. Thus, thionine dye molecules incorporated into the zeolites can be reduced more easily with respect to solution of thionine. In various electrolyte solutions, the midpoint potentials remains constant, but the midpoint potential of the thionine-zeolite electrodes depends on the solution pH. Influence of the pH of the solution on the midpoint potential of an immobilized dye reveals that thionine molecules are accessible to protons. This property is ascribed to the formation of mesopores in the structure of our zeolites suffering from a calcination step. Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 794–800. The text was submitted by the authors in English  相似文献   

6.
The reaction between Fe(III) and dopamine in aqueous solution in the presence of Na2S2O3 was followed through UV–Vis spectroscopy, pH and oxy-reduction potential (Eh) measurements. The formation and quick disappearing of the complex [Fe(III)HL1−]2+, HL1− = monoprotonated dopamine was observed with or without S2O3 2− at pH 3. An unexpected reaction occurs in presence of thiosulfate forming the stable anion complex [Fe(III)(L2−)2]1−, L2− = dopacatecholate (λ = 580 nm) and the auto-increasing of the pH, from 3 to 7. It was proposed that H+ and molecular oxygen are consumed by free radical thiosulfate formed during the reaction.  相似文献   

7.
The effect of mM concentrations of K3[Fe(CN)6], Fe(III), Mo(VI), KSCN and KMnO4 on the generation of BiH3 by the reaction of 0.2–10 μg ml−1 Bi(III) with 0.2 M tetrahydroborate(III) at 1 M acidity (HCl or HNO3) was investigated. Chemical vapour generation (CVG) of BiH3 was investigated by atomic absorption spectrometry using a continuous flow reaction system (CF–CVG–AAS) and different mixing sequences and reagent reaction times. Gas chromatography–mass spectrometry (GC–MS) was employed in batch generation experiments with NaBD4. In the absence of additives, the formation of Bi0 at high concentrations of Bi(III) caused rollover of calibration curves and limited the linear range to less than 1 μg ml−1 Bi(III). In the presence of additives, the formation of Bi0 was not observed and the linear range was increased to 5 μg ml−1 of Bi(III) while rollover was completely removed. GC–MS experiments indicated that the presence of additives did not affect the direct transfer of H from boron to bismuth. Experiments with CF–CVG–AAS and different mixing sequences and reagent reaction times suggest that additives act by preventing the formation of Bi0 through the formation of reaction intermediates which evolve towards the formation of BiH3 at elevated Bi(III)/NaBH4 ratios.   相似文献   

8.
A simple and rapid flow-injection spectrophotometric method for the determination of iron(III) and total iron is proposed. The method is based on the reaction between iron(III) and O-acetylsalicylhydroxamic acid (AcSHA) in a 2 % methanol solution resulting in an intense violet complex with strong absorption at 475 nm. Optimum conditions for the determination of iron(III) and the interfering ions were tested. The relative standard deviation for the determination of 5 μg L−1 iron(III) was 0.85 % (n = 10), and the limit of detection (blank signal plus three times the standard deviation of the blank) was 0.5 μg L−1, both based on the injection volumes of 20 μL. The method was successfully applied in the determination of iron(III) and total iron in water and ore samples. The method was verified by analysing a certified reference material Zn/Al/Cu 43XZ3F and also by the AAS method.  相似文献   

9.
The sorption of anions H2PO4 , HPO4 2−, PO4 3−, [Fe(CN)6]3−, and [Fe(CN)6]4− from aqueous solutions on the surface of FeIII and ZrIV oxyhydroxide hydrogels freshly precipitated at pH 4–13 was studied. The region of sorbate concentrations was from 0.00025 to 0.06 mol L−1. The plots of the anion uptakes vs. their equilibrium concentrations are represented by isotherms of the first type, which are well described by the Langmuir equation if the quantity of the amount adsorbed is expressed as mol-site g−1. The maximum uptakes and constants of the Langmuir equation were calculated. The phosphate anions occupy the same number of sorption sites on the sorbents precipitated at different pH. The average specific content of sorption sites for the ferro- and zirconogels in the metastability period is independent of the pH of their precipitation, being 3.1·10−3 and 3.2·10−3 mol-site g−1, respectively. The [Fe(CN)6]3− and [Fe(CN)6]4− anions are sorbed only on the positively charged sites of the hydrogels and occupy not more than 2·10 mol-site g−1 in the studied interval of pH of precipitation. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1736—1741, August, 2005.  相似文献   

10.
For the system liquid anion-exchanger—Cr(III)−NCS, an investigation has been made of the dependence of the percentage extraction of Cr(III) on parameters such as standing time of the Cr(III)−NCS solution, temperature, pH and type of exchanger. Quantitative extraction of e.g. 4·10−4 M Cr(III) by 0.1M Aliquat in CCl4 is easily achieved at room temperature, using 4.75M KNCS−0.05N HCl as aqueous phase. At high Cr(III) concentrations, the complex anion present in the organic phase is Cr(NCS) 6 3− ; when working with dilute metal ion solutions, the species extracted is Cr(NCS)4 (H2O) 2 . Separations of mixtures containing 10−2−10−4 M Co(II), Ni(II) and Cr(III) have successfully been accomplished.  相似文献   

11.
A highly precise and accurate method for the determination of minor amounts of iron by substoichiometric isotope dilution analysis is described. The constant amount of Fe(III) is substoichiometrically extracted with 2·10−4M oxine in chloroform from the aqueous phase of pH 9.2–10.0 containing 6·10−3M tartrate. The interfering ions such as Mn(II), Co(II), Ni(II), Cu(II), and Zn(II), can be removed by the preliminary extraction of Fe(III) from 7.5M hydrochloric acid solutions into isopropyl ether. The present method has been applied to the determination of iron in biological standard reference materials, i.e., the NBS Spinach (SRM-1570) and the NIES Pepperbush (SRM No. 1), and the results obtained are 548±9 ppm (NBS certified value: 550±20 ppm) and 193±4 ppm, respectively.  相似文献   

12.
The ability of living filamentous cells of the cyanobacterium Oscillatoria homogenea to separate stable strontium and 90Sr from aqueous solution is demonstrated in this study. On a basis of filamentous cell biovolume, the removal were 43.78 nM·ml·(mm3)−1 and 3129.48 mBq·ml·(mm3)−1 after 240 hour incubation. The optimum pH for strontium uptake is 9±0.3. The increasing biovolume of the blue-green alga elevates sorption. In the liquid culture containing 21.2 mm3·ml−1 filamentous cells and 1000 nM·ml−1 initial strontium concentration, the maximum strontium removal was 455.34 nM·ml·(mm3)−1. At 1200 Lux illumination, the maximum removal value was 58.62 nM·ml·(mm3)−1, and at the initial strontium concentration of 6590 nM·ml−1, 235.40 nM·ml·(mm3)−1 removal was observed. The experimental data fitted to Langmuir isotherm and the model parameters and correlation coefficient (R 2) were q max = 7.143 μg·(mm3)−1, b = 0.003 and 0.99, respectively.  相似文献   

13.
Direct electrochemistry of hemoglobin (Hb) immobilized on the dihexadecyl hydrogen phosphate (DHP)/single-wall carbon nanotubes (SWNTs) film modified Au electrode is investigated. The immobilized Hb displays a couple of stable and well-defined redox peaks, whose formal potential (E 0) is −0.434 V (SCE) in a phosphate buffer solution of pH 7.0. The formal potential of the heme Fe(III)/Fe(II) couple shifts negatively linearly with increased pH with a slope of −42.3 mV/pH, denoting that one electron transfer accompanies single proton transportation. Both SWNTs and DHP can accelerate the electron transfer between Hb and the electrode. Using DHP/Hb/SWNTs-film-modified Au electrode, the interaction between Hb and taxol is investigated. The voltammetric response of Hb decreases with increasing concentration of taxol. The peak currents decreases proportionally to the taxol concentration at 1.4 × 10−5 to 1.3 × 10−4 M, the linear regression equation being Δi (A) = 2.9603 − 0.4225 ctaxol (M), with a correlation coefficient (r) 0.9985, and the detection limit 6.95 × 10−6 M (signal-to-noise ratio of three). Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 801–807. The text was submitted by the authors in English.  相似文献   

14.
Photometric determination of aqueous Co(II), Cu(II), Ni(II) and Fe(III) was performed using indicator films prepared by immobilization of 1-nitroso-2-naphthol-3,6-disulfonic acid disodium salt (NRS) into hardened photographic film. Immobilization was based on electrostatic interaction of reagent and metal complexes with the gelatin. The isoelectric point pH of hardened gelatin (4.46±0.04) was evaluated by viscometry. Co(II), Fe(III), Ni(II) form 1:3 complexes with NRS in gelatin at pH 2 and Cu(II) forms 1:2 complexes. Their log β′ values were: Co-6.7, Fe-8.6, Cu-8.0, and Ni-6.4. The absorption maxima were: 370nm for NRS, and 430nm, 470nm, 495nm and 720nm for complexes of Co(II), Ni(II), Cu(II) and Fe(III). An algorithm for their simultaneous determination using the indicator films was developed. The detection limits were: clim(Co2+) = 0.45×10−5 M, clim(Fe3+) = 0.50×10−5 M, clim(Cu2+) = 0.67×10−5 M, clim(Ni2+) = 0.75×10−5 M,; and their sum clim(ΣMn+) = 0.82×10−5 M.   相似文献   

15.
The oxidation rates of nanomolar levels of Fe(II) in seawater (salinity S = 36.2) by mixtures of O2 and H2O2 has been measured as a function of pH (5.8–8.4) and temperature (3–35∘C). A competition exists for the oxidation of Fe(II) in the presence of both O2 (μ mol⋅L−1 levels) and H2O2 (nmol⋅L−1 levels). A kinetic model has been applied to explain the experimental results that considers the interactions of Fe(II) with the major ions in seawater. In the presence of both oxidants, the hydrolyzed Fe(II) species dominate the Fe(II) oxidation process between pH 6 and 8.5. Over pH range 6.2–7.9, the FeOH+ species are the most active, whereas above pH 7.9, the Fe(OH)02 species are the most active at the levels of CO2−3 concentration present in seawater. The predicted Fe(II) oxidation rate at [Fe(II)]0 = 30nmol⋅L−1 and pH = 8.17 in the oxygen-saturated seawater with [H2O2]0 = 50nmol⋅L−1 (log 10 k = −2.24s−1) is in excellent agreement with the experimental value of log 10 k = −2.29s−1 ([H2O2]0 = 55nmol⋅L−1, pH = 8).  相似文献   

16.
The disaccharide isomaltose is produced via an enzymatic reaction and is adsorbed to BEA zeolite. This reaction integrated adsorption can be achieved as fluidized bed as well as fixed bed. We investigated isotherms, adsorption enthalpies and sorption kinetics of BEA zeolite and extrudates with a novel aluminum phosphate sintermatrix. These extrudates contain 50% (w/w) of BEA 150 zeolites (Si/Al = 75) as primary crystals. BET-surface for extrudates is 245 m2⋅g−1 and 487 m2⋅g−1 for zeolite. Extrudates show a monomodal macropore structure with a maximum at 90 nm. All isotherms show a type I shape. For lower equilibrium concentrations, which occur during the enzymatic reaction, Henry’s law is applied and compared to a Langmuir model. Adsorption equilibrium constant K i,L calculated from Langmuir for extrudates at 4 °C is 64.7 mL⋅g−1 and more than twice as high as obtained from Henry’s law with K i is 26.8 mL⋅g−1. Adsorption on extrudates at 4 °C is much stronger than on zeolite crystals where the Henry coefficient K i is 17.1 mL⋅g−1. Adsorption enthalpy Δh Ad calculated from van’t Hoff plot with the Henry equation is −44.3 kJ⋅mol−1 for extrudates and −29.6 kJ⋅mol−1 for zeolite crystals. Finally, the kinetics for ad- and desorption were calculated from the initial slope. The diffusion rate for ad- and desorption on extrudates were in the same range while adsorption on zeolites is three orders of magnitudes faster than desorption.  相似文献   

17.
The removal of Ce(III) from aqueous solutions by hydrous manganese oxide (HMO) and hydrous stannic oxide (HSO) was studied as a function of concentrations (10−2−10−7 mol·dm−3) and pH (1.2–10.0) by using the radiotracer technique. The effects of co-ions and irradiation of HMO and HSO were also studied. The uptake of Ce(III) fitted well with the Freundlich adsorption isotherm. No significant desorption of pre-adsorbed Ce(III) in the studied temperature range (303–333 K) indicates that both the solids may be good adsorbents for the removal of Ce(III).  相似文献   

18.
The complexation of As(V) in aqueous solutions in the presence of iron(III) was investigated spectrophotometrically with both variable and constant ionic strengths. The determined thermodynamic and stoichiometric formation constants of the FeHAsO4+ species are log10β = 9.21± 0.01 and log10Iβ (1.0mol⋅dm−3 NaClO4) = 7.78 ± 0.01, respectively. The numerical treatment of the obtained spectral data was performed with the SPECA program. The analysis required the consideration of the hydrolysis of Fe(III) and the protonation of As(V) in the pH range studied. No significant hydrolysis was observed because of the low pH values (pH < 2.5) involved. The stabilities of the solid Fe(III) arsenates was established by solubility experiments. All of the solubility experiments were performed in aqueous NaClO4 solutions at constant ionic strength (1.0mol⋅dm−3) and at 25C. The experimental data were consistent with FeAsO4⋅2H2O being the solid phase (log10 Kso = −24.30± 0.08). The corresponding thermodynamic constants were computed by means of the Modified Bromley's Methodology (MBM) that describes the variation of the activity coefficients of all of the ions involved in the complexation and precipitation equilibria with the medium and ionic strength. Finally, the solid phase obtained in this work was also characterized by FT-IR and FT-Raman spectroscopies, and the hydration of the solid iron arsenate was confirmed by X-ray diffraction data.  相似文献   

19.
The nature of adsorption behavior of Au(III) on polyurethane (PUR) foam was studied in 0.2M HCl aqueous solution. The effect of shaking time and amount of adsorbent were optimized for 3.16·10−5M solution of Au(III) in 0.2M HCl. The classical Freundlich and Langmuir adsorption isotherms have been employed successfully. The Freundlich parameters 1/n and adsorption capacityK are 0.488±0.016 and (1.40±0.22)·10−2 mol·g−1, respectively. The Langmuir constants of saturation capacityM and binding energyb are (1.66±0.08)·10−4mol·g−1 and 40294±2947 l·g−1, respectively, indicating the monolayer chemical sorption. The mean free energy (E) of adsorption of Au(III) on PUR foam has been evaluated using D-R isotherm and found to be 11.5±0.16 kJ·mol−1 reflecting the ion exchange type of chemical adsorption. The effect of temperature on the adsorption has also been studied. the isosteric heat of adsorption was found to be 44.03±1.66 kJ·mol−1. The thermodynamic parameters of ΔG, ΔH, ΔS and equilibrium constantK c have been calculated. The negative values of ΔG, ΔH and ΔS support that the adsorption of Au(III) on PUR foam is spontaneous, exothermic and of ion exchange chemisorption. The nature of the Au(III) species sorbed on PUR foam have been discussed.  相似文献   

20.
Thorium(IV) removal from aqueous solutions by erionite and X zeolite was investigated. The Th(IV) uptake at different thorium nitrate concentrations (from 0.25 to 25 mM) was evaluated. The thorium content in the aqueous solution was determined by neutron activation analysis. Th(IV) retained by zeolites was 1.7 and 3.7 meq/g for erionite and X zeolite. In order to explain the thorium sorption process in both zeolites, ion exchange mechanism was considered. It was found that thorium sorption behavior is strongly dependent of the type of zeolite, the separation factor for Mexican erionite was αTh(IV) Na(I)<1, this zeolite shows preference for Na(I) rather than for Th(IV), however, by X zeolite, αTh(IV) Na(I)~1, this value suggested an approximately ideal ion exchange behavior. The effect of pH on thorium sorption was also considered. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号