首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the optical properties of single isolated silver nanodisks and pairs of disks fabricated by electron beam lithography. By systematically varying the disk size and surface separation and recording elastic scattering spectra in different polarization configurations, we found evidence for extremely strong interparticle interactions. The dipolar surface plasmon resonance for polarization parallel to the dimer axis exhibited a red shift as the interdimer separation was decreased; as expected from previous work, an extremely strong shift was observed. The scattering spectra of single particles and pairs separated by more than one particle radius can be well described by the coupled dipole approximation (CDA), where the particles are approximated as point dipoles using a modified dipole polarizability for oblate spheroids. For smaller particle separations (d < 20 nm), the simple dipole model severely underestimates the particle interaction, indicating the importance of multipolar fields and finite-size effects. The discrete dipole approximation (DDA), which is a finite-element method, describes the experimental results well even at d < 20 nm, including particles that have metallic bridges.  相似文献   

2.
Using electrodynamics calculations, we have discovered one dimensional array structures built from spherical silver nanoparticles that produce remarkably narrow ( approximately meV or less) plasmon resonance spectra upon irradiation with light that is polarized perpendicular to the array axis. The narrow lines require a minimum particle radius of about 30 nm to achieve. Variations of the plasmon resonance wavelength, extinction efficiency and width with particle size, array structure, interparticle distance and polarization direction are examined, and conditions which lead to the smallest widths are demonstrated. A simple analytical expression valid for infinite lattices shows that the sharp resonance arises from cancellation between the single particle width and the imaginary part of the radiative dipolar interaction.  相似文献   

3.
The optical properties of metal nanoparticles are quite different from those of the bulk materials mainly due to the collective oscillations of their conduction electrons known as the surface plasmon resonance(SPR),which is strongly dependent on the particle shape and size,and the dielectric properties of the local environment where the nanoparticles are embedded in. Based on the discrete dipole approximation(DDA)method,we studied the optical properties of silver nanorods with different aspect ratios in some special dielectric environment including air,water,acetone,methylene chloride and pyridine. The DDA simulation of the ultraviolet-visible(UV-Vis)extinction spectra of silver nanorods with varying aspect ratios shows the plasmons absorption splits into two bands corresponding to the oscillation of the free electrons along and perpendicular to the long axis of the rods. The transverse mode shows almost a fixed resonance at about 350 nm while the resonance of the longitudinal mode is red-shifted and strongly depends on the aspect ratio of the nanorods. An empirical formula was given to predict the peak position of the longitudinal palsmon band of the silver nanorods with different aspect ratios in the air. The calculation result also shows the maximum of the longitudinal plasmon band of a silver nanorod with a fixed aspect ratio depends on the medium dielectric constant in a linear way. The TEM image and corresponding UV-Vis extinction spectrum of silver nanosphere and nanorods synthesized by our lab are in good agreement with the DDA simulation results.  相似文献   

4.
The layer-by-layer processing of Au/Au(x)Pd(1-x) core/alloy nanoparticles via microwave irradiation (MWI) based hydrothermal heating is described. Alloy shell growth was monitored by the attenuation of surface plasmon resonance (SPR) as a function of shell thickness and composition. Discrete dipole approximation (DDA) correlated the SPR to particle morphology.  相似文献   

5.
The understanding of the detailed molecular interactions between (GSH) glutathione molecules in the assembly of metal nanoparticles is important for the exploitation of the biological reactivity. We report herein results of an investigation of the assembly of gold nanoparticles mediated by glutathione and the disassembly under controlled conditions. The interparticle interactions and reactivities were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method and the hydrodynamic sizes of the nanoparticle assemblies using the dynamic light scattering technique. The interparticle reactivity of glutathiones adsorbed on gold nanoparticles depends on the particle sizes and the ionic strength of the solution. Larger-sized particles were found to exhibit a higher degree of interparticle assembly than smaller-sized particles. The assembly-disassembly reversibility is shown to be highly dependent on pH and additives in the solution. The interactions of the negatively charged citrates surrounding the GSH monolayer on the particle surface were believed to produce more effective interparticle spatial and electrostatic isolation than the case of OH (-) groups surrounding the GSH monolayer. The results have provided new insights into the hydrogen-bonding character of the interparticle molecular interaction of glutathiones bound on gold nanoparticles. The fact that the interparticle hydrogen-bonding interactions in the assembly and disassembly processes can be finely tuned by pH and chemical means has implications to the exploitation of the glutathione-nanoparticle system in biological detection and biosensors.  相似文献   

6.
Silver nanostructures are containers for surface plasmons - the collective oscillation of conduction electrons in phase with incident light. By controlling the shape of the container, one can control the ways in which electrons oscillate, and in turn how the nanostructure scatters light, absorbs light, and enhances local electric fields. With a series of discrete dipole approximation (DDA) calculations, each of a distinctive morphology, we illustrate how shape control can tune the optical properties of silver nanostructures. Calculated predictions are validated by experimental measurements performed on nanocubes with controllable corner truncation, right bipyramids, and pentagonal nanowires. Control of nanostructure shape allows optimization of plasmon resonance for molecular detection and spectroscopy.  相似文献   

7.
We use the discrete dipole approximation to investigate the electromagnetic fields induced by optical excitation of localized surface plasmon resonances of silver nanoparticles, including monomers and dimers, with emphasis on what size, shape, and arrangement leads to the largest local electric field (E-field) enhancement near the particle surfaces. The results are used to determine what conditions are most favorable for producing enhancements large enough to observe single molecule surface enhanced Raman spectroscopy. Most of the calculations refer to triangular prisms, which exhibit distinct dipole and quadrupole resonances that can easily be controlled by varying particle size. In addition, for the dimer calculations we study the influence of dimer separation and orientation, especially for dimers that are separated by a few nanometers. We find that the largest /E/2 values for dimers are about a factor of 10 larger than those for all the monomers examined. For all particles and particle orientations, the plasmon resonances which lead to the largest E-fields are those with the longest wavelength dipolar excitation. The spacing of the particles in the dimer plays a crucial role, and we find that the spacing needed to achieve a given /E/2 is proportional to nanoparticle size for particles below 100 nm in size. Particle shape and curvature are of lesser importance, with a head to tail configuration of two triangles giving enhanced fields comparable to head to head, or rounded head to tail. The largest /E/2 values we have calculated for spacings of 2 nm or more is approximately 10(5).  相似文献   

8.
The influence of size and geometrical shape on the optical properties of randomly oriented metallic nanorods is investigated using the discrete dipole approximation (DDA). Our calculations provide a benchmark for an accurate characterisation of nanorod suspensions by frequently used optical spectroscopic techniques. Our DDA results confirm the longitudinal plasmon resonance to be primarily affected by the nanorod aspect ratio, and also verify that the quasi-static (dipole) approximation for ellipsoidal particles is only valid for very small sizes. For prolate ellipsoidal and cylindrical nanorods with an identical aspect ratio, the latter exhibit a longitudinal resonance at significantly longer wavelengths. The importance of phase retardation and multipole contributions for larger nanorod dimensions is discussed. Also, we investigate the influence on the optical spectra of electron surface scattering, which arises from the limited size of the nanorods in comparison to the electron mean free path.  相似文献   

9.
Electrodynamic simulations of gold nanoparticle spectra were used to investigate the sensitivity of localized surface plasmon band position to the refractive index, n, of the medium for nanoparticles of various shapes and nanoshells of various structures. Among single-component nanoparticles less than 130 nm in size, sensitivities of dipole resonance positions to bulk refractive index are found to depend only upon the wavelength of the resonance and the dielectric properties of the metal and the medium. Among particle plasmons that peak in the frequency range where the real part of the metal dielectric function varies linearly with wavelength and the imaginary part is small and slowly varying, the sensitivity of the peak wavelength, lambda, to refractive index, n, is found to be a linearly increasing function of lambda, regardless of the structural features of the particle that determine lambda. Quasistatic theory is used to derive an analytical expression for the refractive index sensitivity of small particle plasmon peaks. Through this analysis, the dependence of sensitivity on band position is found to be determined by the wavelength dependence of the real part, epsilon', of the particle dielectric function, and the sensitivity results are found to extend to all particles with resonance conditions of the form, epsilon' = -2chin(2), where chi is a function of geometric parameters and other constants. The sensitivity results observed using accurate computational methods for dipolar plasmon bands of gold nanodisks, nanorods, and hollow nanoshells extend, therefore, to particles of other shapes (such as hexagonal and chopped tetrahedral), composed of other metals, and to higher-order modes. The bulk refractive index sensitivity yielded by the theory serves as an upper bound to sensitivities of nanoparticles on dielectric substrates and sensitivities of nanoparticles to local refractive index changes, such as those associated with biomolecule sensing.  相似文献   

10.
This paper reports the orientation-dependent optical properties of two-dimensional arrays of anisotropic metallic nanoparticles. These studies were made possible by our simple procedure to encapsulate and manipulate aligned particles having complex three-dimensional (3D) shapes inside a uniform dielectric environment. Using dark field or scattering spectroscopy, we investigated the plasmon resonances of 250-nm Au pyramidal shells embedded in a poly(dimethylsiloxane) (PDMS) matrix. Interestingly, we discovered that the scattering spectra of these particle arrays depended sensitively on the direction and polarization of the incident white light relative to the orientation of the pyramidal shells. Theoretical calculations using the discrete dipole approximation support the experimentally observed dependence on particle orientation with respect to incident field. This work presents an approach to manipulate--by hand--ordered arrays of particles over cm(2) areas and provides new insight into the relationship between the shape of well-defined, 3D particles and their supported plasmon resonance modes.  相似文献   

11.
The peak location of the localized surface plasmon resonance (LSPR) of noble metal nanoparticles is highly dependent upon the refractive index of the nanoparticles' surrounding environment. In this study, new phenomena are revealed by exploring the influence of interacting molecular resonances and nanoparticle resonances. The LSPR peak shift and line shape induced by a resonant molecule vary with wavelength. In most instances, the oscillatory dependence of the peak shift on wavelength tracks with the wavelength dependence of the real part of the refractive index, as determined by a Kramers-Kronig transformation of the molecular resonance absorption spectrum. A quantitative assessment of this shift based on discrete dipole approximation calculations shows that the Kramers-Kronig index must be scaled in order to match experiment.  相似文献   

12.
Simulations of the absorption efficiency using the discrete dipole approximation (DDA) method and taking into account the real shape of gold nanorods are reported. A dominant surface plasma band corresponding to the longitudinal resonance is observed. Its maximum position lambda(max) shifts to the red as the aspect ratio increases. The transversal dipolar and multipolar mode wavelength positions are also discussed. These data are in good agreement with previous theoretical work based on classical electrostatic predictions and assuming that gold nanorods behave as ellipsoidal particles. From the experimental point of view, good agreement with the published data for gold nanorods is obtained.  相似文献   

13.
We report the synthesis ofAu nanoparticles, with tunable longitudinal plasmon band and shape selectivity, mediated by starch in the presence of ultrasonic waves. The synthesis was carried out by reduction of HAuCl4, at various concentrations, using H2O2 as the reducing agent. When the reactions were carried out in the absence of ultrasonic waves, there was no occurrence of the longitudinal resonance band, while the transverse plasmon resonance band shifted toward a higher wavelength. Transmission electron microscopic measurements revealed an increase in particle sizes with increasing higher initial HAuCl4 concentration. On the other hand, in the presence of ultrasonic waves, as the initial concentration of HAuCl4 was increased, while the transverse plasmon resonance band remained the same, the longitudinal plasmon resonance band increasingly shifted toward a higher wavelength. Transmission electron microscopic measurements revealed the change in shape from spherical to triangular to hexagonal particles with increasing initial HAuC14 concentration. We also report that the starch-stabilized nanoparticles could be precipitated from the solution by a starch digesting enzyme which also binds with the particles resulting in its precipitation.  相似文献   

14.
Biotin-capped gold nanoparticles assembled on flat gold with volume fraction f are studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM) in order to estimate the dielectric function of the gold nanoparticles based on the Maxwell-Garnett (MG) theory. The complex dielectric function (epsilon',epsilon') of the spherical nanoparticles at three representative wavelengths in the vis-near-IR region, i.e., lambda = 543, 632.8, and 1152 nm, is estimated for a surface homogeneously covered with nanoparticles in order to discuss the wavelength dependence of the dielectric function. The SPR response of a surface covered with particles in 2D aggregates is also analyzed. The experimental SPR curve of the particle aggregates deviates from the theoretical predictions, suggesting dipole interactions between particles.  相似文献   

15.
We study the dipolar coupling of gold nanoparticles arranged in regular two-dimensional arrays by extinction micro-spectroscopy. When the interparticle spacing approaches the plasmon resonance wavelength of the individual particles, an additional band of very narrow width emerges in the extinction spectrum. By systematically changing the particles dielectric environment, the particles shape, the grating constant and angle of incidence, we show how this band associated to a grating induced-resonance can be influenced in strength and spectral position. The spectral position can be qualitatively understood by considering the conditions for grazing grating orders whereas the strength can be related to the strength of dipolar scattering from the individual particles.  相似文献   

16.
The influence of the morphology of gold nanoparticles on the surface plasmon resonance was investigated experimentally and theoretically. Highly monodisperse bumpy gold nanoparticles of increasing size were synthesized, and the surface plasmon resonance wavelength shifted to longer wavelengths more rapidly with increasing particle size for bumpy particles than for spherical gold nanoparticles. The detailed surface morphology of bumpy gold nanoparticles was characterized by AFM, TEM, and SEM, and the optical properties were investigated on a single particle level. The comparison of the plasmon resonant properties between bumpy and spherical gold nanoparticles was also examined with a theoretical model.  相似文献   

17.
This paper describes the results of an investigation of the interparticle interactions and reactivities in the assembly of gold nanoparticles mediated by cyanine dyes. The combination of the positively charged indolenine cyanine dyes and the negatively charged gold nanoparticles is shown to form a J-aggregate bridged assembly of nanoparticles, in addition to hydrophobic interparticle and electrostatic dye-particle interactions. Such interparticle interactions and reactivities are studied by probing the absorption of J-aggregates and fluorescence from the dyes and the surface plasmon resonance absorption from the nanoparticles. The J-aggregation of the dyes adsorbed on the nanoparticles is shown to play an important role in the assembly of nanoparticles. The spectral evolution of the J-band of the dyes and the surface plasmon resonance band of the nanoparticles was found to be sensitive to the nature of the charge and the structure of the dyes. The fluorescence quenching for the dyes was shown to be quantitatively related to the surface coverage of the dyes on the nanocrystal surfaces. These findings have provided important information for assessing a two-step process involving a rapid adsorption of the dyes on the nanoparticles and a subsequent assembly of the nanoparticles involving a combination of interparticle J-aggregation and hydrophobic interactions of the adsorbed dyes. The results are discussed in terms of the structural effects of the dyes, and the interparticle molecular interactions and reactivities, which provide important physical and chemical insights into the design of dye-nanoparticle structured functional nanomaterials.  相似文献   

18.
Single two-dimensional planar silver arrays and one-dimensional linear gold chains of nanoparticles were investigated by dark-field surface plasmon spectroscopy and studied as a function of interparticle distance, particle size, and number of particles. In agreement with recent theoretical predictions, a red shift of the surface plasmon resonance occurring in two-dimensional arrays was found for lattice spacings below 200 nm. This red shift is associated with a significant broadening of the resonance and is attributed to the onset of near-field interactions. We found that the relative contributions of the long-range and short-range interactions in two-dimensional arrays of particles are fundamentally different to those occurring in individual linear chains.  相似文献   

19.
Present investigation demonstrates a very simple seed-mediated route, using hydroxypropyl methyl cellulose (HPMC) as stabilizing agent, for the synthesis of silver nanodiscs in aqueous solution. Central to the concept of seed-mediated growth of nanoparticles is that small nanoparticle seeds serve as nucleation centres to grow nanoparticles to a desired size and shape. It is found that the additional citrate ions in the growth solution play the pivotal role in controlling the size of silver nanodiscs. Similar to the polymers in the solution, citrate ions could be likewise dynamically adsorbed on the growing silver nanoparticles and promote the two-dimensional (2D) growth of nanoparticles. Morphological, structural, and spectral changes associated with the seed-mediated growth of the nanoparticles in the presence of HPMC are characterized using UV–vis and TEM spectroscopic studies. Metal nanoparticles have received increasing attention for their peculiar capability to control local surface plasmon resonance (LSPR) when interacting with incident light waves. Extensive simulation study of the UV–vis extinction spectra of our synthesized silver nanodiscs has been carried out using discrete dipole approximation (DDA) methodology.  相似文献   

20.
The current intense interest in the properties of plasmonic nanostructures for their applications in chemical and biochemical sensors, medical diagnostics and therapeutics, and biological imaging is fundamentally based on their enhanced optical absorption and scattering properties. In this study, the optical extinction, absorption, and scattering efficiencies were calculated as a function of shape definition, aspect ratio, surrounding medium, and material selection. The discrete dipole approximation method was used, which is known to be a very useful and versatile computational tool for particles with any arbitrary shape. Relative contribution of scattering to the total extinction for the longitudinal mode was found to be significantly dependent on the aspect ratio of the nanorod in a somewhat complex manner, different from a typical linear relationship for the resonance wavelength. A slight elongation of Au nanosphere gives rise to a drastic increase in the relative scattering efficiency, which eventually reaches a maximum and begins to decrease with further increase in the aspect ratio. This is ascribed to the increasing absorptive contribution from the larger imaginary dielectric function of the metal particle in the longer wavelength region where the red-shifted excitation of the longitudinal resonance mode occurs. For transverse mode exhibiting the blue-shift in the resonance peak, on the contrary, the absorption efficiency is relatively enhanced compared to the scattering efficiency with increasing aspect ratio. This is thought to result from the dominant effect of the interband transition present in this wavelength region. Besides the dependence of plasmonic characteristics on the aspect ratio of nanorod, the DDA results for a small change of the end-cap shape and the index of the surrounding medium lead us to conclude that there exist two competing key factors: a weighting factor assigned to the shape parameter and the dielectric function of the metal particle, which control the relative enhancement in the scattering and absorption as well as the linearity of resonance wavelength with regard to the aspect ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号