首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show how to compute nonlinear optical absorption spectra of an Asymmetric Double Quantum Well (ADQW) in the region of intersubband electronic transitions. The method uses the microscopic calculation of the dephasing due to electron-electron and electron-phonon scattering rates and the macroscopic real density matrix approach to compute the electromagnetic fields and susceptibilities. The polarization dephasing and the corrections to the Rabi frequencies due to the electron-electron interaction are also taken into account. For a proper choice of the QW widths and of the driving fields we obtain electromagnetically induced transparency. This transparency has a very narrow linewidth when a single driving field is applied resonant to the transition between the second and the third subband. In the case of two resonant driving fields or of a driving field resonant between the first and third subband we obtain a large transparency enhancement over the entire absorption spectrum. Results are given for GaAs/GaAlAs QWs and experiments are proposed. Received 21 June 2001 and Received in final form 21 January 2002  相似文献   

2.
The influence of thermalized non-coherent carriers on the dielectric function of GaAs/AlAs quantum wells is investigated by reflection spectroscopy. Experiments are performed using the method of spectral interferometry, where both amplitude and phase of reflected pulses can be determined. For low excitation density the complex coefficient of reflection can be described using as dielectric function a broadened Elliot formula. With increasing carrier density pronounced nonlinearities appear in both amplitude and phase due to many-body effects between excited carriers. The nonlinear behavior fits very well to the results of a many-body theory based on the Semiconductor Bloch equations including memory effects in the scattering processes between carriers and the polarization induced by the probe pulse. Received 29 May 2002 / Received in final form 23 September 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: manzke@physik3.uni-rostock.de  相似文献   

3.
A detailed calculation of interface phonon assisted electron intersubband transition in double GaAs/AlGaAs quantum well structure is presented. Our calculation concentrates on the lowest two subbands which can be designed to be in resonance with a given interface phonon mode. Various phonon mode profiles display quasi-symmetric or quasi-antisymmetric shapes. The quasi-antisymmetric phonon modes give rise to much larger transition rates than those assisted by quasi-symmetric ones. The transition rate reaches a maximum when the subband separation coincides with a given phonon mode energy. The calculation procedure presented here can be easily applied to the design and simulation of other low dimensional semiconductor structures, such as quantum cascade lasers. Received 22 December 2002 Published online 23 May 2003 RID="a" ID="a"e-mail: bhwu@263.net  相似文献   

4.
The optical properties of Bragg quantum wells are studied for exciton confinement under center-of-mass quantization. A variational model of Wannier exciton envelope function, that embodies the correct boundary conditions for center-of-mass, is adopted for calculation. The present non-adiabatic exciton model is compared with adiabatic results and with heuristic “hard sphere” model. The radiative self-energy of a single-quantum well (SQW) and multi-quantum wells (MQWs) are computed in the semiclassical framework, and in effective mass approximation, by self-consistent solution of Schroedinger and Maxwell equations. This microscopic solution is free from “fitting” parameter values, except for the non-radiative broadening, and also the exciton dead-layer and the additional boundary condition are not taken ad hoc, but come coherently from the variational principle and self-consistent Schroedinger-Maxwell solution. Dispersion curves of exciton-polariton propagating in a MQW, under Bragg condition, are studied by selected numerical examples. The case of optical gap in correspondence of higher excited states is studied, and, moreover, the interesting effect of gap enhancement or inhibition, in correspondence of non-resonant Bragg energy, will be addressed.  相似文献   

5.
The east-west directional anisotropy in clock rate observed in the Hafele-Keating experiment with circumnavigation atomic clocks is commonly ascribed to the special relativity. In this investigation, based on the local-ether wave equation, an entirely different interpretation of this anisotropy is presented by showing that the clock-rate variation can originate from an intrinsic quantum property of the atom. For a harmonic-like wavefunction, the local-ether wave equation leads to a first-order time evolution equation similar to Schr?dinger's equation. However, the time derivative incorporates a speed-dependent factor similar to that in the Lorentz mass-variation law. Consequently, the quantum energy, the transition frequency, and hence the atomic clock rate decrease with the atom speed by this speed-dependent mass-variation factor. According to the local-ether model, the speed is referred specifically to a geocentric or heliocentric inertial frame for an earthbound or interplanetary clock, respectively. It is shown that this restriction on reference frame is actually in accord with the various experimental results of the anisotropy and the clock-rate difference in the Hafele-Keating experiment, the synchronism and the clock-rate adjustment in GPS (global positioning system), and of the spatial isotropy in the Hughes-Drever experiment. Moreover, the switching of the unique reference frame is in accord with the frequency-shift formulas adopted in earthbound and interplanetary spacecraft microwave links. Meanwhile, the local-ether model predicts a constant deviation in frequency shift from the calculated result reported in an interplanetary spacecraft link. This discrepancy then provides a means to test the local-ether wave equation. Received 11 December 2000 and Received in final form 20 August 2001  相似文献   

6.
The nonlinear optical rectification (OR) in the asymmetric double triangular quantum wells (DTQWs) is investigated theoretically. The dependence of OR on the right-well width of the DTQWs is studied, and the influence of the applied electric field on OR is also taken into account. The analytical expression of the OR susceptibility is analyzed by using the compact density-matrix approach and the iterative method and the numerical calculations are presented for the typical GaAs/AlxGa1-xAs asymmetric DTQWs. The results show that the OR susceptibility obtained in this coupled system can reach the magnitude of 10-3 m/V, 2-3 orders of magnitude higher than that in single quantum systems. Moreover, the OR susceptibility is not a monotonic function of the width of the right well, but has complex relationship with it. The calculated results also reveal that an applied electric field has a great influence on the OR susceptibility. Applying an appropriate electric field to a quasi-symmetric or symmetric DTQW can result in a larger OR susceptibility as compared with that obtained in an optimal asymmetric DTQW without electric field.  相似文献   

7.
We discuss the properties of a large number N of one-dimensional (bounded) locally periodic potential barriers in a finite interval. We show that the transmission coefficient, the scattering cross section σ, and the resonances of σ depend sensitively upon the ratio of the total spacing to the total barrier width. We also show that a time dependent wave packet passing through the system of potential barriers rapidly spreads and deforms, a criterion suggested by Zaslavsky for chaotic behaviour. Computing the spectrum by imposing (large) periodic boundary conditions we find a Wigner type distribution. We investigate also the S-matrix poles; many resonances occur for certain values of the relative spacing between the barriers in the potential. Received 1st August 2001 and Received in final form 18 November 2001  相似文献   

8.
For a closed bi-partite quantum system partitioned into system proper and environment we interpret the microcanonical and the canonical condition as constraints for the interaction between those two subsystems. In both cases the possible pure-state trajectories are confined to certain regions in Hilbert space. We show that in a properly defined thermodynamical limit almost all states within those accessible regions represent states of some maximum local entropy. For the microcanonical condition this dominant state still depends on the initial state; for the canonical condition it coincides with that defined by Jaynes' principle. It is these states which thermodynamical systems should generically evolve into. Received 13 June 2002 / Received in final form 14 November 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: jochen@theol.physik.uni-stuttgart.de  相似文献   

9.
The presence of an extrinsic photoluminescence (PL) band peaked at 1.356 eV at low temperature is observed, on a large number of self-assembled InAs and In0.5Ga0.5As quantum dot (QD) structures, when exciting just below the GaAs absorption edge. A detailed optical characterization allows us to attribute the 1.356 eV PL band to the radiative transition between the conduction band and the doubly ionized Cu Ga acceptor in GaAs. A striking common feature is observed in all investigated samples, namely a resonant quenching of the QD-PL when exciting on the excited level of this deep defect. Moreover, the photoluminescence excitation (PLE) spectrum of the 1.356 eV emission turns out to be almost specular to the QD PLE. This correlation between the PL efficiency of the QDs and the Cu centers evidences a competition in the carrier capture arising from a resonant coupling between the excited level of the defect and the electronic states of the wetting layer on which the QDs nucleate. The estimated Cu concentration is compatible with a contamination during the epitaxial growth. Received 13 November 2001 / Received in final form 28 May 2002 Published online 19 July 2002  相似文献   

10.
The multiscattering problem is studied in the matrix density formalism. We study how to isolate the quasi-classical degrees of freedom in order to connect them with a cascade approach. The different problems that arise, as well as their possible solutions, are discussed and exemplified with a pion-nucleus model. Received: 24 May 2002 / Accepted: 25 July 2002 / Published online: 17 January 2003 RID="a" ID="a"e-mail: salcedo@ugr.es Communicated by A. Sch?fer  相似文献   

11.
A relation linking the normalized s-wave scattering and the corresponding bound state wave functions at bound state poles is derived. This is done in the case of a non-local, velocity-dependent Kisslinger potential. Using formal scattering theory, we present two analytical proofs of the validity of the theorem. The first tackles the non-local potential directly, while the other transforms the potential to an equivalent local but energy-dependent one. The theorem is tested both analytically and numerically by solving the Schr?dinger equation exactly for the scattering and bound state wave functions when the Kisslinger potential has the form of a square well. A first order approximation to the deviation from the theorem away from bound state poles is obtained analytically. Furthermore, a proof of the analyticity of the Jost solutions in the presence of a non-local potential term is also given. Received: 3 March 2001 / Accepted: 9 June 2001  相似文献   

12.
We analyze optical bistability (OB) behavior based on intersubband transitions in an asymmetric coupled-quantum well (CQW) driven coherently by a probe laser field and a control laser field by means of a unidirectional ring cavity. We demonstrate that OB can be controlled by tuning the energy splitting between two tunnel-coupled electronic levels, the intensity of the control field, and the frequency detuning of the probe and control fields. The influence of the electronic cooperation parameter on the OB behavior is also discussed. This investigation may be used for optimizing and controlling the optical switching process in the CQW solid-state system, which is much more practical than that in atomic system because of its flexible design and the controllable interference strength.  相似文献   

13.
Within the framework of the dielectric-continuum model and Loudon's uniaxial crystal model, the equation of motion for p-polarization field in arbitrary wurtzite multilayer heterostructures are solved for the quasi-confined phonon (QC) modes. The polarization eigenvector, the dispersion relation, and the electron-QC interaction Fröhlich-like Hamiltonian are derived by using the transfer-matrix method. The dispersion relations and the electron-QC coupling strength are investigated for a wurtzite GaN/AlN single QW. The results show that there are infinite branches of dispersion curve with definite symmetry with respect to the center of the QW structure. The confinement of the quasi-confined phonons in the QW leads to a quantization of qz,j characterized by an integer m that defines the order of corresponding quasi-confined modes. The QC modes are more dispersive for decreasing m. The QC modes display an interface behavior in the barrier and a confined behavior in the well. The symmetric modes have more contribution to electron-QC interaction than the antisymmetric modes. The strains have more effect on symmetry modes, and can be ignored for symmetry modes.  相似文献   

14.
In an interferometer, path information and interference visibility are incompatible quantities. Complete determination of the path will exclude any possibility of interference, rendering zero visibility. However, it is, under certain conditions, possible to trade the path information for improved (conditioned) visibility. This procedure is called quantum erasure. We have performed such experiments with polarization-entangled photon pairs. Using a partial polarizer, we could vary the degree of entanglement between the object and the probe. We could also vary the interferometer splitting ratio and thereby vary the a priori path predictability. This allowed us to test quantum erasure under a number of different experimental conditions. All experiments were in good agreement with theory. Received 15 July 2001 and Received in final form 30 November 2001  相似文献   

15.
 We calculate the effect of a homogeneous electric field on electrons, holes and excitons confined in a quantum well structure consisting of alternate thin layers of well and barrier material. The electric field which acts perpendicular to the quantum well is taken as a perturbation on the quantum well structure confining the charges. The electron and hole energies in the conduction and valence subbands are calculated by solving a one-dimensional Schr?dinger equation. The exciton binding energy is calculated using an improved excitonic model. Results obtained indicate the importance of higher-order excitons in optical transitions at high electric fields. Received: 29 February 1996/Accepted: 19 August 1996  相似文献   

16.
We analyze hybrid absorptive-dispersive optical bistability (OB) behavior via tunable Fano-type interference based on intersubband transitions in asymmetric double quantum wells (QWs) driven coherently by a probe laser field by means of a unidirectional ring cavity. We show that OB can be controlled efficiently by tuning the energy splitting of the two excited states (the coupling strength of the tunnelling), the Fano-type interference, and the frequency detuning. The influence of the electronic cooperation parameter on the OB behavior is also discussed. This investigation may be used for optimizing and controlling the optical switching process in the QW solid-state system, which is much more practical than that in atomic system because of its flexible design and the controllable interference strength.  相似文献   

17.
We address the question whether the cut-off dependence, which has to be introduced in order to properly define the Lippmann-Schwinger equation for the one-pion exchange potential plus local (δ-function) potentials, can be removed (up to inverse powers of it) by a suitable tuning of the various (bare) coupling constants. We prove that this is indeed so both for the spin singlet and for the spin triplet channels. However, the latter requires, in the limit when the cut-off is taken to infinity, such a strong cut-off dependence of the coupling constant associated to the non-local term which breaks orbital angular momentum conservation, that the renormalized amplitude lacks from partial-wave mixing. We argue that this is an indication that this term must be treated perturbatively. Received: 7 October 2002 / Accepted: 15 January 2003 / Published online: 5 May 2003  相似文献   

18.
Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.  相似文献   

19.
 We analyze the quantum measurement properties of dual non-degenerate parametric amplifers in the twin-beam configuration, in the cascaded back-action-evasion configuration, and in Kerr-type photon-number quantum non-demolition measurements. It is found that Einstein-Podolsky-Rosen correlations can be obtained between the quadrature components of an idler mode and the sum of the readout of two signal modes. Furthermore, we discuss dual-mode quantum non-demolition measurements on the combination of two light modes, and the generation of number-state entanglement. Received: 12 April 1996/Revised version: 2 July 1996  相似文献   

20.
Quantum spin dynamics as a model for quantum computer operation   总被引:1,自引:0,他引:1  
We study effects of the physical realization of quantum computers on their logical operation. Through simulation of physical models of quantum computer hardware, we analyze the difficulties that are encountered in programming physical realizations of quantum computers. Examples of logically identical implementations of the controlled-NOT operation and Grover's database search algorithm are used to demonstrate that the results of a quantum computation are unstable with respect to the physical realization of the quantum computer. We discuss the origin of these instabilities and discuss possibilities to overcome this, for practical purposes, fundamental limitation of quantum computers. Received 5 November 2001 and Received in final form 8 February 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号