首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present work aimed at studying the dynamic behavior of melt ejection in laser cutting of 1 mm thick titanium sheet and to obtain dross-free cuts with minimum heat affected zone (HAZ). CO2 laser cutting of titanium sheet was carried out with continuous wave (CW) and pulsed mode laser operation with different shear gases namely argon, helium and nitrogen. Laser cutting with high frequency and low-duty cycle pulse mode operation produced dross-free cuts with no noticeable HAZ. Helium, because of its high heat convection and ability to generate high shear stress, produced laser-cuts with narrow HAZ and low dross, as compared to those produced with argon as the shear gas. Microscopic features of laser cut surfaces were analyzed and correlated with dynamic mechanism involved in laser cutting process. Process parameters for laser piercing, required for the initiation of fusion cut within the sheet, were also studied. Laser piercing requires either CW or high-duty cycle (>80%) pulse mode operation.  相似文献   

2.
Surface characteristic of stainless steel sheet after pulsed laser forming   总被引:1,自引:0,他引:1  
Laser forming is a non-contact and die-less forming technique of producing bending, spatial forming, modifying and adjusting the curvature of the metallic sheet by using the controlled laser beam energy. One of the problems in laser forming is controlling the characteristic of laser scanned surface. The aim of the investigation is to explore the relation between the surface behaviors of heat affected zone (HAZ) scanned by pulse laser and the pulse parameters of the laser. This paper illustrated the fundamental theory of pulsed laser affected material, and pays attention to the microstructure, micro-hardness and the anticorrosion in the HAZ generated by the laser scanning. Metallographic microscope, scanning electron microscope (SEM), micro-hardness testing system are used to examine the surface characteristics. The work presented in this paper is beneficial to understand the mechanism of pulse laser affect to materials and improve controlling the surface behaviors scanned by pulsed laser.  相似文献   

3.
355 nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates   总被引:1,自引:0,他引:1  
The 355 nm DPSS UV laser cutting of electronics printed circuit board (PCB) substrates including FR4, and BT/epoxy-based PCB substrates was investigated. The effects of various laser conditions such as scanning speed, assisting gas, repetition rate, and interval between scans on the heat affected zone (HAZ) and charring were studied. The quality and morphology of laser cut PCB substrates were evaluated with optical microscope, and scanning electron microscope (SEM). It was found that multi-pass cutting at high scanning speed can achieve high quality cutting with little charring. It was also found that with O2 assist gas, a certain amount of interval time between scans and higher repetition rate led to less HAZ and less charring. High quality laser cutting of PCB substrates with no delamination, very little charring and minimum HAZ was demonstrated. The developed process has important potential applications in the electronics industry.  相似文献   

4.
The weight reduction of mechanical components is becoming increasingly important, especially in the transportation industry, as fuel efficiency continues to improve. Titanium and titanium alloys are recognized for their outstanding potential as lightweight materials with high specific strength. Yet they also have poor tribological properties that preclude their use for sliding parts. Improved tribological properties of titanium would expand the application of titanium into different fields.Laser alloying is an effective process for improving surface properties such as wear resistance. The process has numerous advantages over conventional surface modification techniques. Many researchers have reported the usefulness of laser alloying as a technique to improve the wear resistance of titanium. The process has an important flaw, however, as defects such as cracks or voids tend to appear in the laser-alloyed zone.Our group performed a novel laser-alloying process using a light-transmitting resin as a source for the carbon element. We laser alloyed a surface layer of pure titanium pre-coated with polymethyl methacrylate (PMMA) and investigated the microstructure and wear properties. A laser-alloyed zone was formed by a reaction between the molten titanium and thermal decomposition products of PMMA at the interface between the substrate and PMMA. The cracks could be eliminated from the laser-alloyed zone by optimizing the laser alloying conditions. The surface of the laser-alloyed zone was covered with a titanium carbide layer and exhibited a superior sliding property and wear resistance against WC-Co.  相似文献   

5.
Titanium oxide ceramic coatings were prepared by micro-arc oxidation (MAO) in galvanostatic regime on biomedical NiTi alloy in H3PO4 electrolyte using DC power supply. The surface of the coating exhibited a typical MAO porous and rough structure. The XPS analysis indicated that the coatings were mainly consisted of O, Ti, P, and a little amount of Ni, and the concentration of Ni was greatly reduced compared to that of the NiTi substrate. The TF-XRD analysis revealed that MAO coating was composed of amorphous titanium oxide. The coatings were tightly adhesive to the substrates with the bonding strength more than 45 MPa, which was suitable for medical applications. The curves of potentiodynamic porlarization indicated that the corrosion resistance of NiTi alloy was significantly improved due to titanium oxide formation on NiTi alloy by MAO.  相似文献   

6.
刘丹  孔德新  苗在强  张昕 《强激光与粒子束》2018,30(6):069001-1-069001-8
为了描述纳秒激光对钛合金打孔过程中孔的形貌及温度场的变化规律,建立激光打孔的物理模型,利用ANSYS中APDL语言进行编程,对温度场进行仿真分析,并利用单元生死技术模拟孔形貌的变化过程。从有限元数值模拟和实验两方面综合分析比较了激光工艺参数(脉冲能量和脉冲数量)对打孔质量(孔深和孔径)的影响,系统论述了钛合金纳秒激光打孔的一般规律,以达到工艺参数优化,提高打孔质量的目的。  相似文献   

7.
This paper describes further research into, and modelling of, the interaction mechanisms of various laser types with materials, including synthetic oil and silicone grease. A Q-switched Nd:YAG pulsed laser, a CW CO2 laser, and a pulsed KrF excimer laser (λ = 248 nm) were used in the study. In general, the materials studied were very absorptive in the ultraviolet, less absorptive in the infrared, and least absorptive in the near-infrared. For the excimer, photo-ablation takes place, while for the other two wavelengths thermal vapourization dominates. In the case of silicone grease, full volatilization is only obtained using the excimer. For the other two wavelengths, this is not the case, with a sticky residue remaining after treatment. Interaction with synthetic oil with its lower boiling point can be obtained for all three laser types. With the Nd:YAG the dominant heating mechanism is conduction from the substrate and a baking effect is observed with strong interaction between the contaminant and the substrate. For the two pulsed lasers, oxidation is substantially less, while for the continuous wave CO2, the interaction time is sufficiently long for oxidation and secondary reactions to take place if care is not taken to work below the reaction threshold.  相似文献   

8.
Laser forming is a new forming technology, which deforms a metal sheet using laser-induced thermal stresses. This paper presents an experimental investigation of pulsed laser forming of stainless steel in water and air. The effects of cooling conditions on bending angle and morphology of the heat affected zone (HAZ) are studied. It is shown that the case of the top surface in air and the bottom surface immersed in water has the greatest bending angle based on the forming mechanism of TGM. The water layer above the sample decreases the coupling energy, leading to a small bending angle. For a thin water thickness (1 mm), the water effects on the HAZ are limited. As water layer thickness increases (5 mm), the concave shape of the HAZ is more remarkable and irregular because the shock waves by high laser energy heating water are fully developed. However, the area and the depth of the HAZ become less significant when water thickness is 10 mm due to the long pathway that laser undergoes.  相似文献   

9.
Titanium oxynitride layers were formed by surface laser treatment of Ti plates in air using a Nd:YAG laser source of short pulse duration about 5 ns. The cumulated laser fluence was varied in the 100-1200 J cm−2 range and its influence on the composition and the structure of the formed layers was studied by different characterization techniques providing physico-chemical and structural information. It was shown that the laser treatment induces the insertion of light elements as O, N and C in the formed layer with the amount increasing with the laser fluence. The in-depth composition of the layers and the co-existence of different phases were also studied.The way in which the laser parameters such as fluence affect the insertion of nitrogen and oxygen was discussed in connection with the effects of the plasma plume formed above the target.  相似文献   

10.
Oxygen and nitrogen insertion in a titanium substrate is performed in air using a Q-switched Nd-YAG laser. This process modifies the surface by the formation of specific layers on the substrate. These layers show different properties, largely influenced by the insertion of elements in the layers. The treatment conditions, especially the laser parameters (fluence and repetition rate), must be known and controlled. Using nuclear analysis, we demonstrate that oxygen insertion is mainly influenced by repetition rate, and that nitrogen insertion is controlled by laser fluence. The physical phenomena involved in the oxygen and nitrogen insertion are discussed.  相似文献   

11.
A model for carbonization of titanium surface by pulsed Nd:YAG laser was developed. The Ti substrate was covered with a relatively thick graphite layer prior to be processed under the laser beam. The experiments were performed at 15 J pulse energy with various pulse durations and overlapping factor to validate the results obtained from the numerical calculations. The model results such as temperature gradient, surface temperature, and the cooling rate were correlated with the micro-hardness of the alloyed layer. Higher pulse durations and overlapping factors which lead to the heat input increasing will result in significant rising in the micro-hardness values. The hardness values of the processed layer partially containing TiC, increased up to 10 times of the Ti substrate.  相似文献   

12.
Titanium and its alloys have high demand in different industries due to their superior properties. The conventional cutting methods face difficulties for cutting these alloys due to their poor thermal conductivity, low elastic modulus and high chemical affinity at elevated temperatures. Laser cutting may be used for quality cuts by proper control of different process parameters. The aim of present research is to simultaneously optimize kerf taper and surface roughness in the laser cutting of Titanium alloy sheet (grade 5). The developed regression models for kerf taper and surface roughness have been taken as objective functions for the genetic algorithm based multi-objective optimization. The paper presents optimal solutions and improvements in different quality characteristics thereof. The significant control factors have been found with further discussion of their effect on two important quality characteristics kerf taper and surface roughness.  相似文献   

13.
In the study, samples of AZ91 magnesium alloy were subjected to a surface remelting treatment by means of a continuous wave (cw) CO2 laser. The scope of the investigation included both macro- and microstructural examination, hardness measurements, and wear resistance tests. The investigation has shown that remelting treatment leads to a strong refinement of structure in the surface layer and a more even distribution of phases. Fine α-phase dendrites have been observed to dominate in the remelting zone. The dendritic arm spacing in the laser treated surface was in the range of 1–2.5 μm. The structural changes triggered by remelting have contributed to an increase in the hardness and the wear resistance of AZ91 alloy. The microhardness of the remelted zone has increased to 71–93 HV0.05 for single-strip remelting and to 84–107 HV0.05 for multi-strip remelting in comparison with about ~60 HV0.05 for untreated alloy. The friction coefficient has decreased from 0.375 for material w/o treatment to 0.311 for remelted material. SEM investigations of samples after tribological tests have revealed the presence of parallel grooves proving the occurrence of microploughing and micro cutting of the material during the tribological testing. The results of the conducted investigation have indicated a beneficial influence of the cw-CO2 laser remelting treatment on the structure and properties of AZ91 alloy.  相似文献   

14.
Capability of laser cutting mainly depends on optical and thermal properties of work material. Highly reflective and thermally conductive Duralumin sheets are difficult-to-laser-cut. Application of Duralumin sheets in aeronautic and automotive industries due to its high strength to weight ratio demand narrow and complex cuts with high geometrical accuracy. The present paper experimentally investigates the laser cutting of Duralumin sheet with the aim to improve geometrical accuracy by simultaneously minimizing the kerf width and kerf deviations at top and bottom sides. A hybrid approach, obtained by combining robust parameter design methodology and Fuzzy logic theory has been applied to compute the fuzzy multi-response performance index. This performance index is further used for multi-objective optimization. The predicted optimum results have been verified by performing the confirmation tests. The confirmation tests show considerable reduction in kerf deviations at top and bottom sides.  相似文献   

15.
The CO2 laser cutting of three polymeric materials namely polypropylene (PP), polycarbonate (PC) and polymethyl methacrylate (PMMA) is investigated with the aim of evaluating the effect of the main input laser cutting parameters (laser power, cutting speed and compressed air pressure) on laser cutting quality of the different polymers and developing model equations relating input process parameters with the output. The output quality characteristics examined were heat affected zone (HAZ), surface roughness and dimensional accuracy. Twelve sets of tests were carried out for each of the polymer based on the central composite design. Predictive models have been developed by response surface methodology (RSM). First-order response models for HAZ and surface roughness were presented and their adequacy was tested by analysis of variance (ANOVA). It was found that the response is well modeled by a linear function of the input parameters. Response surface contours of HAZ and surface roughness were generated. Mathematical model equations have been presented that estimate HAZ and surface roughness for various input laser cutting parameters. Dimensional accuracies of laser cutting on polymers were examined by dimensional deviation of the actual value from the nominal value. From the analysis, it has been observed that PMMA has less HAZ, followed by PC and PP. For surface roughness, PMMA has better cut edge surface quality than PP and PC. The response models developed can be used for practical purposes by the manufacturing industry. However, all three polymeric materials showed similar diameter errors tendency in spite of different material properties.  相似文献   

16.
Active surfaces of plastic injection moulds are nowadays textured using classical techniques (chemical etching or EDM). Replacement of these technologies by a laser technology introduces a big flexibility: absence of mechanical contact with the tool, decrease of the effluent's volume and a big machining precision, even in the case of the complex forms as injection moulds for example. This paper reports the experimental study of the surface laser texturing of TA6V alloy. The influence of the operating factors on the laser texturing process has been studied using two experimental approaches: Taguchi methodology and response surface methodology (RSM). Empirical models have been developed. They allowed us to determine a correlation between process operating factors and performance indicators, such as surface roughness and material removal rate. Results analysis shows that the laser pulse energy and frequency are the most important operating factors. Mathematical models, that have been developed, can be used for the selection of operating factors’ proper values in order to obtain the desired values of the objective functions.  相似文献   

17.
Laser cutting of a rectangular geometry into aluminum alloy 2024 is carried out. Temperature and stress fields are predicted in the cutting section using the ABAQUS finite element code in line with the experimental conditions. Effect of the size of the rectangular geometry on the thermal stress fields is examined in the cutting section. Temperature predictions are validated through the thermocouple data. To identify the morphological changes in the cutting section, an experiment is carried out and the resulting cutting sections are examined under optical and scanning electron microscopes. It is found that temperature and stress fields are affected by the size of the rectangular cut geometry. Temperature and von Mises stress attains higher values for small size rectangular geometry as compared to its counterpart corresponding to the large size geometry. Laser cut sections are free from large size asperities including sideways burning and out-off flatness at the cut edges. Locally scattered some small dross attachments are observed at the kerf exit.  相似文献   

18.
Bulk ultrafine-grained Ni50.8Ti49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential (Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.  相似文献   

19.
Laser cutting of thick sheet metals: Residual stress analysis   总被引:1,自引:0,他引:1  
Laser cutting of tailored blanks from a thick mild steel sheet is considered. Temperature and stress field in the cutting sections are modeled using the finite element method. The residual stress developed in the cutting section is determined using the X-ray diffraction (XRD) technique and is compared with the predictions. The structural and morphological changes in the cut section are examined using the optical microscopy and scanning electron microscopy (SEM). It is found that temperature and von Mises stress increase sharply in the cutting section, particularly in the direction normal to the cutting direction. The residual stress remains high in the region close to the cutting section.  相似文献   

20.
The purpose of this research is to establish the technique of laser flattening and to consider the fundamental mechanism. The thermal stress produced by heating with a laser beam is used to make a flat sheet from a sheet metal of protruded distortion. Three kinds of protrusions are chosen as the typical protruded distortion; point protrusion, line protrusion and face protrusion. For point protrusion, laser irradiation along the circular path is effective when the height of protrusion is large, and the laser irradiation along the radial path is effective when it is small. For line protrusion, laser beam is irradiated along the short straight path whose direction is normal to the centerline of the protrusion. For face protrusion, the height decreases from 1-0.1 mm by the laser irradiation along the circular path. The residual stress at the convex surface of a point protrusion on the sheet metal changes from a large compressive stress to a small tensile stress by the laser irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号