首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A ternary solid complex Gd(Et2dtc)3(phen) has been obtained from reactions of sodium diethyldithiocarbamate (NaEt2dtc), 1,10-phenanthroline (phen) and hydrated gadolinium chloride in absolute ethanol. The title complex was described by chemical and elemental analyses, TG-DTG and IR spectrum. The enthalpy change of liquid-phase reaction of formation of the complex, ΔrHΘm(l), was determined as (-11.628±0.0204) kJ mol-1 at 298.15 K by a RD-496 III heat conduction microcalorimeter. The enthalpy change of the solid-phase reaction of formation of the complex, ΔrHΘm(s), was calculated as (145.306±0.519) kJ mol-1 on the basis of a designed thermochemical cycle. The thermodynamics of reaction of formation of the complex was investigated by changing the temperature of liquid-phase reaction. Fundamental parameters, the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A), the reaction order (n), the activation enthalpy (ΔrHΘ), the activation entropy (ΔrSΘ), the activation free energy (ΔrGΘ) and the enthalpy (ΔrHΘ), were obtained by combination of the thermodynamic and kinetic equations for the reaction with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, ΔcU, was determined as (-18673.71±8.15) kJ mol-1 by a RBC-II rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, ΔcHΘm, and standard enthalpy of formation, ΔfHΘm, were calculated to be (-18692.92±8.15) kJ mol-1 and (-51.28±9.17) kJ mol-1, respectively.  相似文献   

2.
Pyrolysis of n-heptane was investigated in a tubular reactor in the temperature range of 793–953 K and pressure range of 0.1–2.93 MPa. At all conditions, the main products were methane, ethylene, ethane, propylene, 1-butene, 1-pentene and 1-hexene. With an increase in pressure, the selectivities of hydrogen, methane, ethylene and propylene decreased and that of propane, n-butane and 1-butene increased. To explain the product distribution at high pressure, the Rice–Kossiakoff theory was modified by including the bimolecular reactions of alkyl radicals with the parent hydrocarbon. The initial product selectivities, calculated using the modified R–K mechanism, were in good agreement with the experimental selectivities. The overall kinetics of n-heptane pyrolysis was determined by non-linear analysis. The optimum values of the kinetic parameters at each pressure were determined by minimizing the difference between the calculated and experimental conversions. At each pressure, the reaction order was close to unity and the activation energy ranged between 209 and 219 kJ mol−1.  相似文献   

3.
Using the rotating disc method, the rates of dissolution of natural monoclinic pyrrhotite, FeS1.14, in oxygen-free aqueous solutionsS([H+]=0.1, [Na+]=0.9, [ClO 4 ]=1.0 mol kg–1) were determined. In the temperature range 40–90 °C the dissolution reaction occurs under kinetic control; the activation energy being 14±1 kcal mol–1 (50±5 kJ mol–1).
Die Kinetik der Auflösung von monoklinem Pyrrhotin in sauren wäßrigen Lösungen
Zusammenfassung Die Auflösungsgeschwindigkeit von natürlichem monoklinen Pyrrhotin, FeS1.14, wurde in sauerstofffreien LösungenS([H+]=0.1, [Na+]=0.9, [ClO 4 ]=1.0 mol kg–1) mit Hilfe der Methode der rotierenden Scheibe bestimmt. Im Temperaturbereich von 40–90° erfolgt die Auflösungsreaktion kinetisch kontrolliert, wobei eine Aktivierungsenergie von 14±1 kcal mol–1 (59±5 kJ mol–1) gefunden wurde.
  相似文献   

4.
Summary The metal-ylide-initiated radical polymerization of methylmethacrylate (MMA) at 85±0.1°C using dioxan as inert solvent was investigated by dilatometry. Kinetic parameters, average rate of polymerization (R p ) and reaction orders with respect to initiator and monomer have been determined and are 0.33±0.1 and 1.33, respectively. Polymerization was inhibited by hydroquinone and non-polar solvents, but is favoured by polar solvent. The activation energy (E) and k p 2 /kt values were 64.0 kJ mol–1 and 3.3×10–2 l mol–1 s–1 respectively. A suitable mechanism consistent with the observed kinetic data is proposed.  相似文献   

5.
The reaction of the azide ion with the carbocation generated in the photolysis of 1,2,2,4,6-pentamethyl-1,2-dihydroquinoline in methanol was studied by pulse (conventional and laser) and steady-state photolysis techniques. The adduct of the azide ion was characterized by 1H NMR spectrum. Experimental results were interpreted taking into account a competition between the addition of methanol and azide ion to the carbocation. The rate constants for the reaction of the azide ion with the carbocation (k Az) were measured at 2—48 °C in a wide range of [N3 ]0 concentrations from 2·10–7 to 0.1 mol L–1 at different ionic strengths () of the solution. The resulting k Az values are more than an order of magnitude lower than those for diffusional-controlled reactions and vary from 3.2·108 ( = 0) to 4.5·106 L mol–1 s–1 ( = 0.8 mol L–1) in the presence of NaClO4 (18 °C). The activation energy of addition of the azide ion to the carbocation is 21 kJ mol–1, which is by 12 kJ mol–1 lower than the activation energy of the reaction of the carbocation with methanol. The features of the reaction under study are discussed from the viewpoint of the structures of carbocations generated in the photolysis of dihydroquinolines.  相似文献   

6.
The thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O was studied under isothermal conditions in flowing air and argon. Dissociation of the above complex occurs in three stages. The kinetics of the particular stages thermal decomposition have been evaluated. The RN and/or AM models were selected as those best fitting the experimental TG curves. The activation energies,E, and lnA were calculated with a conventional procedure and by a new method suggested by Kogaet al. [10, 11]. Comparison of the results have showed that the Arrhenius parameters values estimated by the use of both methods are very close. The calculated activation energies were in air: 96 kJ mol–1 (R1.575, stage I); 101 kJ mol–1 (Ain1.725 stage II); 185 kJ mol–1 (A 2.9, stage III) and in argon: 66 kJ mol–1 (A 1.25, stage I); 87 kJ mol–1 (A 1.825, stage II); 133 kJ mol–1 (A 2.525, stage III).  相似文献   

7.
Effect of particle size on pyrolysis characteristics of Elbistan lignite   总被引:1,自引:1,他引:0  
In this study, the relationship between particle size and pyrolysis characteristics of Elbistan lignite was examined by using the thermogravimetric (TG/DTG) and differential thermal analysis (DTA) techniques. Lignite samples were separated into different size fractions. Experiments were conducted at non-isothermal conditions with a heating rate of 10°C min−1 under nitrogen atmosphere up to 900°C. Pyrolysis regions, maximum pyrolysis rates and characteristic peak temperatures were determined from TG/DTG curves. Thermogravimetric data were analyzed by a reaction rate model assuming first-order kinetics. Apparent activation energy (E) and Arrhenius constant (A r) of pyrolysis reaction of each particle size fraction were evaluated by applying Arrhenius kinetic model. The apparent activation energies in the essential pyrolysis region were calculated as 27.36 and 28.81 kJ mol−1 for the largest (−2360+2000 μm) and finest (−38 μm) particle sizes, respectively.  相似文献   

8.
The curing reactions of the epoxy resins tetraglycidyl diaminodiphenyl methane (TGDDM) and tetraglycidyl methylenebis (o-toluidine) (TGMBT) using diaminodiphenyl sulfone (DDS), diaminodiphenyl methane (DDM) and diethylenetriamine (DETA) as curing agents were studied kinetically by differential scanning calorimetry. The dynamic scans in the temperature range 20°–300°C were analyzed to estimate the activation energy and the order of reaction for the curing process using some empirical relations. The activation energy for the various epoxy systems is observed in the range 71.9–110.2 kJ·mol–1. The cured epoxy resins were studied for kinetics of thermal degradation by thermogravimetry in a static air atmosphere at a heating rate of 10 deg·min–1. The thermal degradation reactions were found to proceed in a single step having an activation energy in the range 27.6–51.4 kJ·mol–1.
Zusammenfassung Die Vernetzungsreaktionen der Epoxidharze Tetraglycidyl-diamino-diphenyl-methan (TGDDM) und Tetraglycidyl-methylen-bis(o-toluidin) (TGMBT) unter Verwendung von Diaminodiphenylsulfon (DDS), Diaminodiphenylmethan (DDM) und Diethylentriamin (DETA) als Vernetzungsmittel wurden kinetisch mittels DSC untersucht. Die dynamischen Scans im Temperaturbereich 20°–300°C wurden analysiert, um unter Anwendung einiger empirischer Gleichungen die Aktivierungsenergie und die Reaktionsordnung des Vernetzungsprozesses zu ermitteln. Die Aktivierungsenergie der einzelnen Epoxy-Systeme liegt im Bereich 71.9–110.2 kJ·mol–1. An der ausgehärteten Harze wurde mittels TG in einer statischen Luftatmosphäre un deiner Aufheizgeschwindigkeit von 10 Grad/min die Kinetik des termischen Abbaues untersucht. Man fand, daß die thermiscehn Abbaureaktionen in einem Schritt ablaufen und ihre Aktivierungsenergie im Intervall 27.6–51.4 kJ·mol–1 liegt.
  相似文献   

9.
The kinetics of free-radical cross-linking polymerization of methyl methacrylate (MM) in the presence of poly[2-(10-undecenoyloxy)ethyl methacrylate] (PUDEM) as a macromolecular cross-linker has been isothermally examined within the temperature range from 85–100°C using the differential scanning calorimetry (DSC). The activation energy found for this reaction, E a=89.3 kJ mol–1, exceeds slightly the literature values of activation energy obtained for the mass polymerization of MM without any cross-linking agent. The activation energy has been also determined by the isoconversion method. It has been found that E a decreases with the increase in the conversion, which may indicate a change in the reaction mechanism.This work was partly supported by the Committee for Research (KBN) in the framework of project No. 7 T08E 026 20  相似文献   

10.
The basic kinetic parameters of thermal polymerization of hexafluoropropylene, namely, general rate constants, degree of polymerization, and their temperature and pressure dependences in the range of 230–290 °C and 2–12 kbar (200–1200 MPa) were determined. The activation energy (E act = 132±4 kJ mol−1) and activation volume (ΔV 0 = −27±1 cm3 mol−1) were calculated. The activation energy of thermal initiation of polymerization was estimated. The reaction scheme based on the assumption about a biradical mechanism of polymerization initiation was proposed.  相似文献   

11.
The kinetics of sublimation of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II), [Cu(tmhd)2] was studied by non-isothermal and isothermal thermogravimetric (TG) methods. The non-isothermal sublimation activation energy values determined following the procedures of Friedman, Kissinger, and Flynn–Wall methods yielded 93 ± 5, 67 ± 2, and 73 ± 4 kJ mol−1, respectively and the isothermal sublimation activation energy was found to be 97 ± 3 kJ mol−1 over the temperature range of 375–435 K. The dynamic TG run proved the complex to be completely volatile and the equilibrium vapor pressure (pe)T of the complex over the temperature range of 375–435 K determined by a TG-based transpiration technique, yielded a value of 96 ± 2 kJ mol−1 for its standard enthalpy of sublimation (ΔsubH°).  相似文献   

12.
Orthoperiodic and orthotelluric acids, their salts MIO6H4 (M = Li, Rb, Cs) and CsH5TeO6, and dimers of the salt · acid type are calculated within density functional theory B3LYP and basis set LanL2DZ complemented by the polarizationd,p-functions. According to calculations, the salt · acid dimerization is energetically favorable for compounds MIO6H4 · H5IO6 (M = Rb, Cs) and CsIO6H4 · H6TeO6. The dimerization energy is equal to 138–146 kJ mol–1. With relatively small activation energies equal to 4 kJ mol–1 (M = Li) and 11 kJ mol–1 (M = Rb, Cs), possible is rotation of octahedron IO6 relative to the M atom in monomers of salt molecules. The proton transfer along an octahedron occurs with activation energies of 63–84 kJ mol–1. The activation energy for the proton transfer between neighboring octahedrons of the type salt · acid acid · salt equals 8–17 kJ mol–1. Quantum-chemical calculations nicely conform to x-ray diffraction and electrochemical data.  相似文献   

13.
The kinetics of the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) in condensed state has been investigated by high temperature infrared spectroscopy (IR) and thermogravimetry (TG) in conjunction with pyrolysis gas analysis, differential thermal analysis (DTA) and hot stage microscopy. The decomposition proceeds in two main stages under isothermal conditions and the initial stage involving about 24% loss in weight obeys Avrami-Erofe'ev equation (n= 1), and is governed by an activation energy (E) of 150.58 kJ·mol–1 and log(A in s–1) 12.06. The second stage corresponding to 24 to 90% loss in weight gave best fit for Avrami-Erofe'ev equation,n=2, withE=239.56 kJ·mol–1 and log(A in s–1) 19.88 by isothermal TG. The effect of additives, on the initial thermolysis of TATB has also been studied. Evolved gas analysis by IR showed that NH3, CO2, NO2, HCN and H2O are produced in the initial stage of decomposition. The decomposition in KBr matrix in the temperature range 272 to 311.5°C shows relative preferential loss in the -NH2 to -NO2 band intensity which indicates that the rupture of C-NH2 bond, weakened also by the interaction of the NH2 with the neighbouring NO2 group, appears to be the primary step in the thermolysis of TATB.  相似文献   

14.
An activation energy of Ea=213.73 kJ mol–1 has been determined for the thermal decomposition of SmC2O4Cl to SmOCl, CO and CO2. The result is predictable on the basis of the Kahwa-Mulokozi expression + for the activation energy and its extended interpretation.
Zusammenfassung Für den thermischen Zerfall von SmC2O4Cl in SmOCl, CO und CO2 wurde eine Aktivierungsenergie vonE a=213.73 kJ.mol–1 ermittelt. Dieses Ergebnis kann auf der Basis der Kahwa-Mulokozi-Beziehung für die Aktivierungsenergie und ihrer erweiterten Interpretation vorhergesagt werden.


On study leave from the university of sokoto, Nigeria.  相似文献   

15.
An amorphous Mo–Os–Se carbonyl cluster compound has been synthesized in 1,2-dichlorobenzene (b.p.≈180°C) to be tested as an electrocatalyst for molecular oxygen reduction in 0.5 M H2SO4. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) performed for the powder supported on pyrolytic carbon show a distribution of nanometer-scale amorphous particles with agglomerations in cluster forms. The catalytic activity was studied by the rotating disc electrode technique. Kinetic studies show a first-order reaction with a Tafel slope of −0.118 V dec−1 and dα/dT=1.55×10−3 K−1. In the temperature range 298–343 K, an activation energy of 32 kJ mol−1 was determined.  相似文献   

16.
The reactivity of bis(siloxy)silanone groups (Si-0)2Si=O stabilized on a silica surface with respect to H2 molecules was studied. The reaction was found to give the (Si-O)2SiH(OH) groups. The rate constant for this process was determined. Its activation energy in the 300–580 K temperature range is 13.4±0.3 kcal mol–1, and the enthalpy is 54±5 kcal mol–1. The activation energy for the reverse reaction,viz., elimination of a hydrogen molecule, is equal to 65 kcal mol–1. Quantum-chemical calculations of hydrogenation of F2Si=O and (HO)2Si=O, which are the simplest molecular models of the silanone groups, were performed. Data on the geometrical and electronic structures of transition states and on the effects of substituents at the silicon atom on the reactivity of the silanone groups in this process were obtained. The optical absorption band of the surface silanone groups was quantitatively characterized. Its maximum is located at 5.65±0.1 eV; the extinction coefficient at the maximum (220 nm) is (3±0.5) · 10–18 cm2 molec.–1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1951–1958, August, 1996.  相似文献   

17.
The factors affecting the rate of formation and decay of exciplexes with partial charge transfer, which form in the kinetic region of photoinduced electron transfer (G * et > –0.2 eV), were studied. The rate of formation of exciplexes is controlled mainly by the diffusion of reactants and the low steric factor (0.15–1.0). The activation enthalpy and entropy for the exciplex formation (9–13 kJ mol–1 and –(12–28) J mol–1 K–1) are close to the activation enthalpy and entropy of diffusion, respectively. Charge transfer in an exciplex and polarization of the medium generally occur after passing the transition state. In contrast, the activation enthalpy of exciplex decay (its conversion into the reaction products) is close to zero (±6 kJ mol–1) and the activation entropy is strongly negative –(80–130) J mol–1 K–1.  相似文献   

18.
The thermal behaviour of Ba[Cu(C2O4)2(H2O)]·5H2O in N2 and in O2 has been examined using thermogravimetry (TG) and differential scanning calorimetry (DSC). The dehydration starts at relatively low temperatures (about 80°C), but continues until the onset of the decomposition (about 280°C). The decomposition takes place in two major stages (onsets 280 and 390°C). The mass of the intermediate after the first stage corresponded to the formation of barium oxalate and copper metal and, after the second stage, to the formation of barium carbonate and copper metal. The enthalpy for the dehydration was found to be 311±30 kJ mol–1 (or 52±5 kJ (mol of H2O)–1). The overall enthalpy change for the decomposition of Ba[Cu(C2O4)2] in N2 was estimated from the combined area of the peaks of the DSC curve as –347 kJ mol–1. The kinetics of the thermal dehydration and decomposition were studied using isothermal TG. The dehydration was strongly deceleratory and the -time curves could be described by the three dimensional diffusion (D3) model. The values of the activation energy and the pre-exponential factor for the dehydration were 125±4 kJ mol–1 and (1.38±0.08)×1015 min–1, respectively. The decomposition was complex, consisting of at least two concurrent processes. The decomposition was analysed in terms of two overlapping deceleratory processes. One process was fast and could be described by the contracting-geometry model withn=5. The other process was slow and could also be described by the contracting-geometry model, but withn=2.The values ofE a andA were 206±23 kJ mol–1 and (2.2±0.5)×1019 min–1, respectively, for the fast process, and 259±37 kJ mol–1 and (6.3±1.8)×1023 min–1, respectively, for the slow process.Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday  相似文献   

19.
The structure of the peroxyacetic acid (PAA) molecule and its conformational mobility under rotation about the peroxide bond was studied by ab initio and density functional methods. The free rotation is hindered by the trans-barrier of height 22.3 kJ mol–1. The equilibrium molecular structure of AcOOH (C s symmetry) is a result of intramolecular hydrogen bond. The high energy of hydrogen bonding (46 kJ mol–1 according to natural bonding orbital analysis) hampers formation of intermolecular associates of AcOOH in the gas and liquid phases. The standard enthalpies of formation for AcOOH (–353.2 kJ mol–1) and products of radical decomposition of the peroxide — AcO· (–190.2 kJ mol–1) and AcOO· (–153.4 kJ mol–1) — were determined by the G2 and G2(MP2) composite methods. The O—H and O—O bonds in the PAA molecule (bond energies are 417.8 and 202.3 kJ mol–1, respectively) are much stronger than in alkyl hydroperoxide molecules. This provides an explanation for substantial contribution of non-radical channels of the decomposition of peroxyacetic acid. The electron density distribution and gas-phase acidity of PAA were determined. The transition states of the ethylene and cyclohexene epoxidation reactions were located (E a = 71.7 and 50.9 kJ mol–1 respectively).  相似文献   

20.
Experimental results on the influence of preliminary mechanical activation on the thermal decomposition of chalcopyrite are presented and discussed. The following experimental facts were found:
1.  a decrease in the temperature of the endothermic DTA peak of-CuFeS2 from 821 K for a non-activated sample to 763 K for an optimally activated one;
2.  a decrease in the apparent activation energy of the thermal decomposition of CuFeS2 from 238 kJ mol–1 for a non-activated sample to 72 kJ mol–1 for an optimally activated sample.
The intensive grinding of chalcopyrite leads to a shift in temperature of the endothermic DTA peak and brings about a decrease in the activation energy of the thermal decomposition of CuFeS2. These results can be attributed to the mechanically produced alterations in structure and surface properties of the mineral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号