首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a single interval task, multichannel cochlear implant patients were asked to identify the members of a set of seven electric stimuli differing in electric pulse rate or electrode position. The perceptual sensitivity index (d') between successive stimuli in a stimulus set was calculated from the confusions among the seven stimuli. The results showed that the pulse rate above which the identification task became difficult varied from 200 to 600 pps from patient to patient. For the identification of the positions of seven bipolar electrode pairs, d' measures for stimulus sets differing in spatial separation or spatial extent were compared. Spatial separation is defined as the fixed distance between the two basal (or apical) electrodes of two successive bipolar electrode pairs in a stimulus set, while spatial extent is defined as the fixed distance between the apical and basal electrodes of each bipolar electrode pair in a stimulus set. The results showed that perceptual performance improved in an orderly way with spatial separation, but was not significantly affected by spatial extent.  相似文献   

2.
Three psychophysical studies were conducted on two multichannel cochlear implant patients. The first study investigated the amount of loudness summation as a function of the spatial separation between two bipolar electrode pairs in the cochlea. Summation was found to increase in an orderly way with the separation between the two electrode pairs. This observation suggested that loudness was related to the distribution of discharge rate of auditory neurons along the cochlea for electric stimulation, and a model of loudness summation formulated on the basis of a functional relationship between loudness and the discharge rate distribution was proposed. The second study investigated the possibility of estimating the discharge rate distribution by means of masking. The amount of masking was found to decrease in an orderly fashion with the spatial separation between the masker and probe electrode pairs. This pattern of masking is consistent with the physiological and modeling observation that the current and neural discharge rate distributions produced by an electrode pair (masker) in the cochlea are approximately bell shaped with gradually decaying borders. The third study investigated the just-discriminable changes in the temporal delay between two interleaving pulse trains delivered, respectively, to two electrode pairs in the cochlea. Discrimination performance was found to decrease with the spatial separation between the two electrode pairs.  相似文献   

3.
Additivity of simultaneous masking   总被引:1,自引:0,他引:1  
Simultaneous masking functions (signal level at threshold versus masker level) were obtained for equally intense maskers presented individually and in pairs. The signal was a 2.0-kHz sinusoid. The pairs of maskers were (1) two sinusoids with frequencies 1.9 and 2.1 kHz, (2) two narrow bands of noise (50 Hz wide) centered at 1.9 and 2.1 kHz, (3) two narrow bands of noise (50 Hz wide) centered at 1.8 and 1.9 kHz, and (4) the 1.9-kHz sinusoid combined with the narrow band of noise centered at 2.1 kHz. The pairs of maskers produced anywhere from 10 to 17 dB of masking beyond that predicted from the simple sum of the masking produced by the individual maskers. The amount of this "additional masking" was independent of masker level. Adding a continuous low level background noise reduced the amount of additional masking only slightly (approximately 5 dB). The data are consistent with a model in which the effects of the maskers are summed after undergoing independent compressive transformations.  相似文献   

4.
Masking might be due either to the spread of the excitation produced by the masker to the place of the tone signal along the cochlea or to the suppression of the response to the signal by the masker. In order to identify the contributions of these two mechanisms to tone-on-tone masking, masked thresholds of auditory-nerve fibers were measured in anesthetized cats using the same stimulus paradigms and detection criteria as in psychophysics. Suppressive masking was identified by comparing thresholds for simultaneous masking with those for a nonsimultaneous masking technique resembling pulsation thresholds. These nonsimultaneous thresholds do not include the contribution of suppression to masking because suppression only occurs for stimuli that overlap in time. For each masker and signal frequency, the fibers with the lowest (or "best") masked thresholds had characteristic frequencies (CF) slightly on the opposite side of the masker frequency with respect to the signal frequency, consistent with the psychophysical phenomenon of off-frequency listening. Patterns of best masked thresholds against signal frequency resembled psychophysical masking patterns in that they showed a maximum for signal frequencies close to the masker, and a skew toward high frequencies. Masking was found to be both excitatory and suppressive, with the relative contribution of the two mechanisms depending on the frequency separation between signal and masker. Suppressive masking was large for signal frequencies well above the masker. For these conditions, simultaneous thresholds grew more rapidly with masker level than did nonsimultaneous thresholds, suggesting that the upward spread of masking is largely due to the growth of suppression rather than to that of excitation.  相似文献   

5.
Masked thresholds for a 1000-Hz sinusoidal signal were measured as a function of masker level in both forward and simultaneous masking for two types of maskers: a 1000-Hz sinusoid and a narrowband noise, 60-Hz wide, centered at 1000 Hz. In forward masking, the noise masker produced much steeper growth-of-masking functions than the sinusoid. Presenting a contralateral broadband noise "cue" with the forward masker dramatically reduced the slope of masking for the noise masker but did not influence results for the sinusoidal masker. The noise remained the more effective masker. The amount of masking produced by combinations of equally effective narrowband-noise and sinusoidal maskers was compared to that produced by each masker individually with and without the contralateral cue. No additional masking beyond that predicted by energy summation was measured for forward masking. Additional masking beyond energy-sum predictions was measured for analogous conditions in simultaneous masking. Comparisons of results obtained with and without the contralateral cue suggest that signal thresholds in the presence of narrowband-noise forward maskers can reflect nonperipheral auditory processes.  相似文献   

6.
The potential for interactions between steady-state evoked responses to simultaneous auditory stimuli was investigated in two bottlenose dolphins (Tursiops truncatus). Three experiments were conducted using either a probe stimulus (probe condition) or a probe in the presence of a masker (probe-plus-masker condition). In the first experiment, the probe and masker were sinusoidal amplitude-modulated (SAM) tones. Probe and masker frequencies and masker level were manipulated to provide variable masking conditions. Probe frequencies were 31.7, 63.5, 100.8, and 127.0 kHz. The second experiment was identical to the first except only the 63.5 kHz probe was used and maskers were pure tones. For the third experiment, thresholds were measured for the probe and probe-plus-masker conditions using two techniques, one based on the lowest detectable response and the other based on a regression analysis. Results demonstrated localized masking effects where lower frequency maskers suppressed higher frequency probes and higher amplitude maskers produced a greater masking effect. The pattern of pure tone masking was nearly identical to SAM tone masking. The two threshold estimates were similar in low masking conditions, but in high masking conditions the lowest detectable response tended to overestimate thresholds while the regression-based analysis tended to underestimate thresholds.  相似文献   

7.
When a signal is higher in frequency than a narrow-band masker, thresholds are lower when the masker envelope fluctuates than when it is constant. This article investigates the cues used to achieve the lower thresholds, and the factors that influence the amount of threshold reduction. In experiment I the masker was either a sinusoid (constant envelope) or a pair of equal-amplitude sinusoids (fluctuating envelope) centered at the same frequency as the single sinusoid (250, 1000, 3000, or 5275 Hz). The signal frequency was 1.8 times the masker frequency. At all center frequencies, thresholds were lower for the two-tone masker than for the sinusoidal masker, but the effect was smaller at the highest and lowest frequencies. The reduced effect at high frequencies is attributed to the loss of a cue related to phase locking in the auditory nerve. The reduced effect at low frequencies can be partly explained by reduced slopes of the growth-of-masking functions. In experiment II the masker was a sinusoid amplitude modulated at an 8-Hz rate. Masker and signal frequencies were the same as for the first experiment. Randomizing the modulation depth between the two halves of a forced-choice trial had no effect on thresholds, indicating that changes in modulation depth are not used as a cue for signal detection. Thresholds in the modulated masker were higher than would be predicted if they were determined only by the masker level at minima in the envelope, and the threshold reduction produced by modulating the master envelope was less at 250 Hz than at higher frequencies. Experiments III and IV reveal two factors that contribute to the reduced release from masking at low frequencies: The rate of increase of masked threshold with decreasing duration is greater at 250 Hz than at 1000 Hz; the amount of forward masking, relative to simultaneous masking, is greater at 250 Hz than at 1000 Hz. The results are discussed in terms of the relative importance of across-channel cues and within-channel cues.  相似文献   

8.
It is now undisputed that the best frequency (BF) of basal basilar-membrane (BM) sites shifts downwards as the stimulus level increases. The direction of the shift for apical sites is, by contrast, less well established. Auditory nerve studies suggest that the BF shifts in opposite directions for apical and basal BM sites with increasing stimulus level. This study attempts to determine if this is the case in humans. Psychophysical tuning curves (PTCs) were measured using forward masking for probe frequencies of 125, 250, 500, and 6000 Hz. The level of a masker tone required to just mask a fixed low-level probe tone was measured for different masker-probe time intervals. The duration of the intervals was adjusted as necessary to obtain PTCs for the widest possible range of masker levels. The BF was identified from function fits to the measured PTCs and it almost always decreased with increasing level. This result is inconsistent with most auditory-nerve observations obtained from other mammals. Several explanations are discussed, including that it may be erroneous to assume that low-frequency PTCs reflect the tuning of apical BM sites exclusively and that the inherent frequency response of the inner hair cell may account for the discrepancy.  相似文献   

9.
This study investigated the role of uncertainty in masking of speech by interfering speech. Target stimuli were nonsense sentences recorded by a female talker. Masking sentences were recorded from ten female talkers and combined into pairs. Listeners' recognition performance was measured with both target and masker presented from a front loudspeaker (nonspatial condition) or with a masker presented from two loudspeakers, with the right leading the front by 4 ms (spatial condition). In Experiment 1, the sentences were presented in blocks in which the masking talkers, spatial configuration, and signal-to-noise (S-N) ratio were fixed. Listeners' recognition performance varied widely among the masking talkers in the nonspatial condition, much less so in the spatial condition. This result was attributed to variation in effectiveness of informational masking in the nonspatial condition. The second experiment increased uncertainty by randomizing masking talkers and S-N ratios across trials in some conditions, and reduced uncertainty by presenting the same token of masker across trials in other conditions. These variations in masker uncertainty had relatively small effects on speech recognition.  相似文献   

10.
When normal-hearing adults and children are required to detect a 1000-Hz tone in a random-frequency multitone masker, masking is often observed in excess of that predicted by traditional auditory filter models. The excess masking is called informational masking. Though individual differences in the effect are large, the amount of informational masking is typically much greater in young children than in adults [Oh et al., J. Acoust. Soc. Am. 109, 2888-2895 (2001)]. One factor that reduces informational masking in adults is spatial separation of the target tone and masker. The present study was undertaken to determine whether or not a similar effect of spatial separation is observed in children. An extreme case of spatial separation was used in which the target tone was presented to one ear and the random multitone masker to the other ear. This condition resulted in nearly complete elimination of masking in adults. In young children, however, presenting the masker to the nontarget ear typically produced only a slight decrease in overall masking and no change in informational masking. The results for children are interpreted in terms of a model that gives equal weight to the auditory filter outputs from each ear.  相似文献   

11.
The present study was a follow-up to a pilot study in which it was found that a 500-Hz-wide narrow-band noise (NBN) masker produced more masking than a tonal (T) masker for signal frequencies both above and below the masker frequency. The aim of the present study was to determine to what extent these results were influenced by an interaction of the relatively rapid temporal envelope fluctuations of the NBN and the short (10-ms) duration of the signal. In the first experiment, the masking produced by a regular NBN, a low-noise noise (LNN), and a T was compared. The LNN produced less masking than the NBN, and about as much as the T, suggesting that the inherent amplitude fluctuations in the NBN were largely responsible for the greater masking produced by that masker. In the second experiment, the masking produced by a regular NBN was compared with that by a T for a signal duration of 10 or 200 ms. The difference in masking between the two maskers was reduced or eliminated when the signal duration was 200 ms, because the threshold in the presence of the NBN masker decreased more with increasing signal duration. This could reflect a decreased "confusion" between the signal and the inherent fluctuations of the NBN masker.  相似文献   

12.
A masker can reduce target intelligibility both by interfering with the target's peripheral representation ("energetic masking") and/or by causing more central interference ("informational masking"). Intelligibility generally improves with increasing spatial separation between two sources, an effect known as spatial release from masking (SRM). Here, SRM was measured using two concurrent sine-vocoded talkers. Target and masker were each composed of eight different narrowbands of speech (with little spectral overlap). The broadband target-to-masker energy ratio (TMR) was varied, and response errors were used to assess the relative importance of energetic and informational masking. Performance improved with increasing TMR. SRM occurred at all TMRs; however, the pattern of errors suggests that spatial separation affected performance differently, depending on the dominant type of masking. Detailed error analysis suggests that informational masking occurred due to failures in either across-time linkage of target segments (streaming) or top-down selection of the target. Specifically, differences in the spatial cues in target and masker improved streaming and target selection. In contrast, level differences helped listeners select the target, but had little influence on streaming. These results demonstrate that at least two mechanisms (differentially affected by spatial and level cues) influence informational masking.  相似文献   

13.
The effect of perceived spatial differences on masking release was examined using a 4AFC speech detection paradigm. Targets were 20 words produced by a female talker. Maskers were recordings of continuous streams of nonsense sentences spoken by two female talkers and mixed into each of two channels (two talker, and the same masker time reversed). Two masker spatial conditions were employed: "RF" with a 4 ms time lead to the loudspeaker 60 degrees horizontally to the right, and "FR" with the time lead to the front (0 degrees ) loudspeaker. The reference nonspatial "F" masker was presented from the front loudspeaker only. Target presentation was always from the front loudspeaker. In Experiment 1, target detection threshold for both natural and time-reversed spatial maskers was 17-20 dB lower than that for the nonspatial masker, suggesting that significant release from informational masking occurs with spatial speech maskers regardless of masker understandability. In Experiment 2, the effectiveness of the FR and RF maskers was evaluated as the right loudspeaker output was attenuated until the two-source maskers were indistinguishable from the F masker, as measured independently in a discrimination task. Results indicated that spatial release from masking can be observed with barely noticeable target-masker spatial differences.  相似文献   

14.
The additivity of forward masking and repetitive stimulation effects on wave V of the brain-stem auditory evoked response (BAER) was investigated. The effects of repetitive stimulation were evaluated for a stimulus train (called the adaptation series), with a 12.5-ms within-train interclick interval. The forward masker was a 100-ms, 80-dB SPL broadband noise with forward-masker intervals ranging from 12.5-87.5 ms. Forward masking and repetitive stimulation increased the latency of wave V of the BAER. The combined forward masking/adaptation series produced less wave V latency shift than the summed individual effects. Forward masking reduced wave V amplitude at brief forward masker intervals, while repetitive stimulation did not affect wave V amplitude. Wave V amplitude was decreased for the combined forward masking/adaptation series, and the time course of amplitude recovery of the combination was prolonged compared to the forward masking alone condition. The nonadditivity of forward masking and rate effects on wave V latency is similar to that found for repetitive stimulation and simultaneous masking [Burkard and Hecox, J. Acoust. Soc. Am. 74, 1204-1213 (1983)]. These findings are consistent with the position that forward masking and rate effects on wave V latency are produced by overlapping mechanisms.  相似文献   

15.
Lutfi [J. Acoust. Soc. Am. 73, 262-267 (1983)] compared simultaneous masking functions (signal threshold versus masker level) for individual sinusoidal and narrow-band noise maskers, and for those maskers presented in pairs. Lutfi found that the pairs of maskers produced 10-17 dB "excess" masking over that predicted from the linear sum of their individual masking and explained the results in terms of a model in which the effects of the maskers are summed after undergoing independent compressive transformations. This paper describes experiments similar to those of Lutfi, and presents evidence suggesting that Lutfi's results may have been influenced by two factors: (1) combination-product detection, and (2) the use of different detection cues for single maskers and for pairs of maskers. Experiment I showed that when the stimulus conditions were chosen so as to minimize the likelihood of combination-product detection, "excess" masking was only 3-5 dB. Experiment II supported the idea that for a single narrow-band noise masker, subjects make use of the relatively slow envelope fluctuations to enhance performance. When two independent narrow-band noise maskers are added, the effectiveness of this cue is reduced, and between 3 and 9 dB of "excess" masking occurs. When the two noises are derived from the same source, and have correlated envelope fluctuations, no "excess" masking occurs. The results indicate that Lufti's compressive-nonlinearity model clearly fails in some situations.  相似文献   

16.
This study examined whether "modulation masking" could be produced by temporal similarity of the probe and masker envelopes, even when the masker envelope did not contain a spectral component close to the probe frequency. Both masker and probe amplitude modulation were applied to a single 4-kHz sinusoidal or narrow-band noise carrier with a level of 70 dB SPL. The threshold for detecting 5-Hz probe modulation was affected by the presence of a pair of masker modulators beating at a 5-Hz rate (40 and 45 Hz, 50 and 55 Hz, or 60 and 65 Hz). The threshold was dependent on the phase of the probe modulation relative to the beat cycle of the masker modulators; the threshold elevation was greatest (12-15 dB for the sinusoidal carrier and 9-11 dB for the noise carrier, expressed as 20 log m) when the peak amplitude of the probe modulation coincided with a peak in the beat cycle. The maximum threshold elevation of the 5-Hz probe produced by the beating masker modulators was 7-12 dB greater than that produced by the individual components of the masker modulators. The threshold elevation produced by the beating masker modulators was 2-10 dB greater for 5-Hz probe modulation than for 3- or 7-Hz probe modulation. These results cannot be explained in terms of the spectra of the envelopes of the stimuli, as the beating masker modulators did not produce a 5-Hz component in the spectra of the envelopes. The threshold for detecting 5-Hz probe modulation in the presence of 5-Hz masker modulation varied with the relative phase of the probe and masker modulation. The pattern of results was similar to that found with the beating two-component modulators, except that thresholds were highest when the masker and probe were 180 degrees out of phase. The results are consistent with the idea that nonlinearities within the auditory system introduce distortion in the internal representation of the envelopes of the stimuli. In the case of two-component beating modulators, a weak component is introduced at the beat rate, and it has an amplitude minimum when the beat cycle is at its maximum. The results could be fitted well using two models, one based on the concept of a sliding temporal integrator and one based on the concept of a modulation filter bank.  相似文献   

17.
Psychophysical pulse-train forward-masking (PTFM) recovery functions were measured in fifteen subjects with the Nucleus mini-22 cochlear implant and six subjects with the Clarion cochlear implant. Masker and probe stimuli were 500-Hz trains of 200- or 77-micros/phase biphasic current pulses. Electrode configurations were bipolar for Nucleus subjects and monopolar for Clarion subjects. Masker duration was 320 ms. Probe duration was either 10 ms or 30 ms. Recovery functions were measured for a high-level masker on a middle electrode in all 21 subjects, on apical and basal electrodes in 7 of the Nucleus and 3 of the Clarion subjects, and for multiple masker levels on the middle electrode in 8 Nucleus subjects and 6 Clarion subjects. Recovery functions were described by an exponential process in which threshold shift (in microA) decreased exponentially with increasing time delay between the offset of the masker pulse train and the offset of the probe pulse train. All but 3 of the 21 subjects demonstrated recovery time constants on a middle electrode that were less than 95 ms. The mean time constant for these 18 subjects was 54 ms (s.d. 17 ms). Three other subjects tested on three electrodes exhibited time constants larger than 95 ms from an apical electrode only. Growth-of-masking slopes depended upon time delay, as expected from an exponential recovery process, i.e., progressively shallower slopes were observed at time delays of 10 ms and 50 ms. Recovery of threshold shift (in microA) for PTFM in electrical hearing behaves inthe same way as recovery of threshold shift (in dB) for pure-tone forward masking in acoustic hearing. This supports the concept that linear microamps are the electrical equivalent of acoustic decibels. Recovery from PTFM was not related to speech recognition in a simple manner. Three subjects with prolonged PTFM recovery demonstrated poor speech scores. The remaining subjects with apparently normal PTFM recovery demonstrated speech scores ranging from poor to excellent. Findings suggest that normal PTFM recovery is only one of several factors associated with good speech recognition in cochlear-implant listeners. Comparisons of recovery curves for 10- and 30-ms probe durations in two subjects showed little or no temporal integration at time delays less than 95 ms where recovery functions have steep slopes. The same subjects exhibited large amounts of temporal integration at longer time delays where recovery slopes are more gradual. This suggests that probe detection depends primarily on detection of the final pulses in the probe stimulus and supports the use of offset-to-offset time delays for characterizing PTFM recovery in electric hearing.  相似文献   

18.
When a masking sound is spatially separated from a target speech signal, substantial releases from masking typically occur both for speech and noise maskers. However, when a delayed copy of the masker is also presented at the location of the target speech (a condition that has been referred to as the front target, right-front masker or F-RF configuration), the advantages of spatial separation vanish for noise maskers but remain substantial for speech maskers. This effect has been attributed to precedence, which introduces an apparent spatial separation between the target and masker in the F-RF configuration that helps the listener to segregate the target from a masking voice but not from a masking noise. In this study, virtual synthesis techniques were used to examine variations of the F-RF configuration in an attempt to more fully understand the stimulus parameters that influence the release from masking obtained in that condition. The results show that the release from speech-on-speech masking caused by the addition of the delayed copy of the masker is robust across a wide variety of source locations, masker locations, and masker delay values. This suggests that the speech unmasking that occurs in the F-RF configuration is not dependent on any single perceptual cue and may indicate that F-RF speech segregation is only partially based on the apparent left-right location of the RF masker.  相似文献   

19.
Previous work has indicated that target-masker similarity, as well as stimulus uncertainty, influences the amount of informational masking that occurs in detection, discrimination, and recognition tasks. In each of five experiments reported in this paper, the detection threshold for a tonal target in random multitone maskers presented simultaneously with the target tone was measured for two conditions using the same set of five listeners. In one condition, the target was constructed to be "similar" (S) to the masker; in the other condition, it was constructed to be "dissimilar" (D) to the masker. The specific masker varied across experiments, but was constant for the two conditions. Target-masker similarity varied in dimensions such as duration, perceived location, direction of frequency glide, and spectro-temporal coherence. Group-mean results show large decreases in the amount of masking for the D condition relative to the S condition. In addition, individual differences (a hallmark of informational masking) are found to be much greater in the S condition than in the D condition. Furthermore, listener vulnerability to informational masking is found to be consistent to at least a moderate degree across experiments.  相似文献   

20.
This study examined whether increasing the similarity between informational maskers and signals would increase the amount of masking obtained in a nonspeech pattern identification task. The signals were contiguous sequences of pure-tone bursts arranged in six narrow-band spectro-temporal patterns. The informational maskers were sequences of multitone bursts played synchronously with the signal tones. The listener's task was to identify the patterns in a 1-interval 6-alternative forced-choice procedure. Three types of multitone maskers were generated according to different randomization rules. For the least signal-like informational masker, the components in each multitone burst were chosen at random within the frequency range of 200-6500 Hz, excluding a "protected region" around the signal frequencies. For the intermediate masker, the frequency components in the first burst were chosen quasirandomly, but the components in successive bursts were constrained to fall in narrow frequency bands around the frequencies of the components in the initial burst. Within the narrow bands the frequencies were randomized. This masker was considered to be more similar to the signal patterns because it consisted of a set of narrow-band sequences any one of which might be mistaken for a signal pattern. The most signal-like masker was similar to the intermediate masker in that it consisted of a set of synchronously played narrow-band sequences, but the variation in frequency within each sequence was sinusoidal, completing roughly one period in a sequence. This masker consisted of discernible patterns but not patterns that were part of the set of signals. In addition, masking produced by Gaussian noise bursts--thought to produce primarily peripherally based "energetic masking"--was measured and compared to the informational masking results. For the three informational maskers, more masking was produced by the maskers comprised of narrow-band sequences than for the masker in which the frequencies were not constrained to narrow bands. Also, the slopes of the performance-level functions for the three informational maskers were much shallower than for the Gaussian noise masker or for no masker. The findings provided qualified support for the hypothesis that increasing the similarity between signals and maskers, or parts of the maskers, causes greater informational masking. However, it is also possible that the greater masking was a consequence of increasing the number of perceptual "streams" that had to be evaluated by the listener.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号