首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diode laser atomic absorption measurements of argon traces in low-pressure discharges were carried out to detect and measure gas leaks in a test chamber. Helium flows as a carrier gas through the test chamber and the discharge. In the case of a leak, air and thus also its natural content of argon is mixed to the helium gas-flow through the chamber. The argon content of the mixed gas flow through the discharge is determined by wavelength modulation diode laser atomic absorption spectrometry. The resulting absorption signal is a measure for the existing leak-rate. For barometric pressure of ambient air lowest detectable leak rates are typically 10−6 mbar l s−1. By application of pure Ar with pressures above 1 bar detectable leak rates can in practice be lower than 10−8 mbar l s−1.  相似文献   

2.
An element-selective GC-plasma detector consisting of a modulated low-pressure microwave-induced plasma and a laser detection system based on Wavelength Modulation Diode Laser Atomic Absorption Spectroscopy (WM-DLAAS) was investigated. The influence on the plasma conditions and the fragmentation capability of different types of organic compounds, such as alkanes, alkenes, alkynes and aromatics, was studied by measurements of the element ratios of C, H and Cl, and the population density of the metastable 1s5 level of Kr added as a trace to the plasma gas (He or Ar). Deviations from the expected stoichiometrical ratios were found to be insignificant. Therefore, calibration and determination of the sum formula of analyte species is possible if an internal standard is used. Furthermore, the correlation between the metastable density in the microwave-induced plasma and the total dissociation energy of the analytes was studied.  相似文献   

3.
We used a tunable diode laser absorption spectrometer to follow the condensation of D(2)O in a supersonic Laval nozzle. We measured both the concentration of the condensible vapor and the spectroscopic temperature as a function of position and compared the results to those inferred from static pressure measurements. Upstream and in the early stages of condensation, the quantitative agreement between the different experimental techniques is good. Far downstream, the spectroscopic results predict a lower gas phase concentration, a higher condensate mass fraction, and a higher temperature than the pressure measurements. The difference between the two measurement techniques is consistent with a slight compression of the boundary layers along the nozzle walls during condensation.  相似文献   

4.
5.
An element-selective detector for chromatography based on atomic absorption spectrometry with semiconductor diode lasers is described. The analytical utility of the technique is demonstrated by speciation examples of HPLC and GC employing analytical flames and plasmas to atomize.  相似文献   

6.
Tuneable laser diodes were characterized and compared for use as tuneable sources in gas absorption spectroscopy. Specifically, the characteristics of monolithic widely tuneable single frequency lasers, such as sampled grating distributed Bragg reflector laser and modulated grating Y-branch laser diodes, recently developed for optical communications, with operating wavelengths in the 1,520 nm相似文献   

7.
Spectroscopic results on the radicals HCSi, CCO, and FeC obtained by studying in detail energy level structures using 0.8 microm diode laser system are reported. Of these radicals, the CCO radical was investigated mainly using Fabry-Perot type diode lasers with inconvenient mode gaps in the early stage of our near-infrared diode laser spectroscopic study of free radicals, and on the other hand, the FeC and HCSi radicals were studied using an external cavity diode laser. For the FeC radical, which is an interesting radical composed of an iron atom having 3d electrons, information on spin-orbit interaction between the triplet electronic ground state and a low-lying singlet electronic excited state is reported somewhat in detail. For the HCSi and CCO radicals, spectral particularities produced by a Renner-Teller interaction and a spin-orbit interaction are described for their high-resolution spectroscopic interest.  相似文献   

8.
Infrared absorption lines of hydrazine are broad and typically not baseline resolved, with line strengths approximately 100 times weaker than the more widely studied compound ammonia. Hardware and software improvements have been made to a two-color infrared tunable diode laser (IR-TDL) spectrometer in order to improve the limit of detection (LOD) of hydrazine (N2H4) in the cigarette smoke matrix. The detection limit in the smoke matrix was improved from 25 parts-per-million-by-volume (ppmv) to 4.2 ppmv using a 100 m pathlength cell with acquisition of background spectra immediately prior to each sample and 100 ms temporal resolution. This study did not detect hydrazine in cigarette smoke in the 964.4-964.9 cm(-1) spectral region, after mathematically subtracting the spectral contributions of ethylene, ammonia, carbon dioxide, methanol, acrolein, and acetaldehyde. These compounds are found in cigarette smoke and absorb in this spectral region. The LOD is limited by remaining spectral structure from unidentified smoke species. The pseudo random noise (root mean square) in the improved instrument was 2 x 10(-4) absorbance units (base e) which is equivalent to a 0.09 ppmv hydrazine gas sample in the multipass cell. This would correspond to a detection limit of 0.44 ppmv of hydrazine, given the dilution of the smoke by a factor of 5 by the sampling system. This is a factor of 10 less than the 4.2 ppmv detection limit for hydrazine in the smoke matrix, and indicates that the detection limit is primarily a result of the complexity of the matrix rather than the random noise of the TDL instrument.  相似文献   

9.
It has been proven that cavity enhanced absorption spectroscopy is a high sensitive spectral technique. The aim of our study was to apply this spectral technique to the detection of carbon monoxide with a narrow line width tunable DFB diode laser and high Q factor optical cavity. Absorption signals were extracted from a measurement recording the average of 20 highest light intensities that leak out of the cavity. The absorption spectrum of CO centered at 6354.18 cm−1 was recorded; the experiment results indicate that cavity enhanced absorption spectroscopy could produce accurate high resolution spectrum. A detection sensitivity about 5.687 × 10−7 cm−1 has been achieved in a 45 cm-long cell.  相似文献   

10.
Laser atomic absorption spectroscopy applying semiconductor diode lasers   总被引:1,自引:0,他引:1  
The application of tunable single mode semiconductor diode lasers in atomic absorption spectroscopy is discussed in general. The use of several diode lasers, periodical modulation of the laser powers and Fourier analysis of the absorption signals allow background-corrected multi-element atomic absorption spectroscopy with extended dynamic range and internal standardization. This is demonstrated by the simultaneous determination of rubidium and barium in aqueous solutions with a commercial graphite tube atomizer.  相似文献   

11.
Using a laser resonator design which supports many high order transverse modes it is possible to enhance a spatial variation (i.e., an image) as well as a spectral variation in absorption of a sample inside the optical cavity of an organic dye laser. This technique also enhances the practical sensitivity of intracavity absorption spectroscopy.  相似文献   

12.
Hauser PC  Chiang DW 《Talanta》1993,40(8):1193-1200
The suitability of blue light-emitting diodes as radiation sources in molecular absorption spectroscopy was evaluated. Electronic as well as spectral considerations are discussed. A transducer based on a blue light-emitting diode and a photodiode is described which yields direct absorbance readings by passing the photocurrent to an integrated circuit logarithmic converter. The performance of this device was tested for commonly used spectrophotometric procedures for Cr, Mn, Zn, Fe and Cl and compared with conventional molecular absorption spectroscopy. Also investigated was the application of the transducer as a detector in flow-injection analysis.  相似文献   

13.
Schmid S  Macka M  Hauser PC 《The Analyst》2008,133(4):465-469
A flow-through optical absorption detector for HPLC was constructed using a novel deep-UV light-emitting diode as radiation source with a peak emission wavelength of 255 nm. For measuring the transmitted intensity (a property correlated to Transmittance) a special UV-sensitive photodiode was employed. Besides the power source, no optical or electronic components other than an inexpensive operational amplifier and a few passive components were necessary. The performance of the detector was tested with three substances, namely nitrobenzene, benzoic acid and methyl benzoate, which were separated by gradient elution using an acetonitrile/water mixture and tetrabutylammonium hydrogensulfate as pH-buffer. Calibration curves for concentrations between 1.6 microg.mL(-1) and 400 microg.mL(-1) (nitrobenzene) and 8 microg.mL(-1) and 2.5 mg.mL(-1) (benzoic acid and methyl benzoate) were determined and coefficients of determination, r(2), of 0.9945, 0.9972 and 0.9996 were obtained for quadratic curve fits for the 3 compounds respectively. Relative standard deviations (n = 7) for peak areas were determined as 0.35% (nitrobenzene, 80 microg.mL(-1)), 0.27% (benzoic acid, 400 microg.mL(-1)) and 0.83% (methyl benzoate, 200 microg.mL(-1)). The lower limits of detection were found to be 750 ng.mL(-1), 5.8 microg.mL(-1) and 12 microg.mL(-1) for nitrobenzene, benzoic acid and methyl benzoate respectively.  相似文献   

14.
The performance of a home-built tunable diode laser (TDL) spectrometer, aimed at multi-line detection of carbon dioxide, has been evaluated and optimized. In the regime of the (30(0)1)(III) <-- (000) band of (12)CO(2) around 1.6 microm, the dominating isotope species (12)CO(2), (13)CO(2), and (12)C(18)O(16)O were detected simultaneously without interference by water vapor. Detection limits in the range of few ppmv were obtained for each species utilizing wavelength modulation (WM) spectroscopy with balanced detection in a long-path absorption cell set-up. High sensitivity in conjunction with high precision -- typically +/-1 (per thousand) and +/-6 (per thousand) for 3% and 0.7% of CO(2), respectively -- renders this experimental approach a promising analytical concept for isotope-ratio determination of carbon dioxide in soil and breath gas. For a moderate (12)CO(2) line, the pressure dependence of the line profile was characterized in detail, to account for pressure effects on sensitive measurements.  相似文献   

15.
Experiences in the analytical application of the 2f-wavelength modulation technique for isotope selective atomic absorption spectroscopy in a graphite furnace are reported. Experimental as well as calculated results are presented, mainly for the natural lithium isotopes. Sensitivity, linearity, and (isotope) selectivity are studied by intensity modulation and wavelength modulation. High selectivities can be attained, however, on the cost of detection power. It is shown that the method enables the measurement of lithium isotope ratios larger than 2000 by absorption in a low-pressure graphite tube atomizer.  相似文献   

16.
A technique has been developed for the determination of molecular parameters, including infrared absorption line positions, strengths, and nitrogen-broadened half-widths for 1,3-butadiene (C(4)H(6)) and propylene (C(3)H(6)). The parameters for these two molecules are required for quantitation using Tunable Diode Laser Absorption Spectroscopy (TDLAS). These molecules have populations of highly overlapping infrared absorption lines in their room temperature spectra. The technique reported here provides a procedure for estimating the molecular parameters for these overlapping absorption lines from quantitative reference spectra taken with the TDLAS instrument at different pressures and concentrations. The system was developed for the quantitation of gaseous constituents in a single puff of cigarette smoke and this paper will describe the procedure and some of the factors that influence the accuracy of quantitation for 1,3-butadiene, including the approach taken to minimize the adverse effects of the absorption due to propylene in the same spectral region.  相似文献   

17.
Experiences in the analytical application of the 2f-wavelength modulation technique for isotope selective atomic absorption spectroscopy in a graphite furnace are reported. Experimental as well as calculated results are presented, mainly for the natural lithium isotopes. Sensitivity, linearity, and (isotope) selectivity are studied by intensity modulation and wavelength modulation. High selectivities can be attained, however, on the cost of detection power. It is shown that the method enables the measurement of lithium isotope ratios larger than 2000 by absorption in a low-pressure graphite tube atomizer. Received: 26 April 1999 / Revised: 25 June 1999 / Accepted: 30 June 1999  相似文献   

18.
We describe the application of a three-laser tunable diode laser absorption spectrometer (TDLAS), called 'tracer in-situ TDLAS for atmospheric research' (TRISTAR), to measure nitrogen dioxide (NO2), formaldehyde (HCHO) and hydrogen peroxide (H2O2), during an intensive measurement campaign on Mt. Cimone (44 degrees 11'N, 10 degrees 42'E, 2165 m asl), Northern Appenines, Italy in June 2000 as part of the EU-project 'mineral dust and tropospheric chemistry' (MINATROC). The TRISTAR instrument was a major component of an instrument package, provided by the Max-Planck-Insitut für Chemie, to investigate free tropospheric gas-phase chemistry over the Appenines. Here we discuss the optical, electronic, gas flow, and calibration setup of the TDLAS used during the campaign. We characterized extensively the instrument's performance during a preparatory phase in the laboratory and compared the laboratory results to the in-field results. Consistency checks with additional trace gas measurements obtained during the campaign create high confidence in the measured concentrations. Correlations between different trace gas species, along with other evaluation tools, allow a full chemical characterization of air masses to meet the goals of the campaign.  相似文献   

19.
We describe a light emitting diode (LED) based multi-reflection capillary scale absorbance detector based on both square and round capillaries and compare their performance with a conventional single-pass on-tube detector. The optical path length is extended by silver coating, the external surface of the capillary. The reflective geometry has been reported to be less prone to artifacts induced by refractive index changes; we do find this to be true. Although the detection volume/illuminated volume is increased some, a multi-reflection cell based on a 180 μm bore capillary with a ∼2-cm long illuminated volume shows over a 50-fold gain in signal-to-noise (S/N) compared to a single-pass on-tube configuration with the same capillary. The limit of detection (LOD) is 4.4 fmol (2.6 pg, 1 μL of 22.0 nM injected dye) BTB under pulseless (pneumatic) flow conditions. The cells behave as multipath devices where the effective path lengths are greater at low absorbance values. In our experiments, where non-coherent light is launched through optical fibers that are large compared to capillary bore dimensions, increase in the effective path length of the cell do not occur in a predictable fashion with the angle of incidence of the light beam. Although the effective path length almost linearly increases with increasing distance between the light entry and exit windows, the absolute values of the effective path lengths are always lower than this physical distance, suggesting that after some passage through the solution, light largely travels through or along the glass wall. Square capillaries have better light transmission and offer some performance advantages. Multi-reflection cells can indeed be of value for sensitive detection in microflow systems.  相似文献   

20.
以发射波长473nm的半导体激光泵浦固体激光器(LD DPSSL)为激发光源,研制了一种小型模块化激光诱导荧光检测器。以异硫氰酸荧光素(FITC)为荧光探针,毛细管电泳柱上检测(0.05mmi.d)评价了该体系,得到了5×10-12mol L的浓度检出限。利用该系统考察了氨基酸、实际样品中B族维生素的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号