首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
Wang J  Du J  Li Z  Lin J 《Ultrasonics》2006,44(Z1):e935-e939
The effect of a metal layer over an elastic substrate on surface acoustic wave propagating in the structure can be evaluated precisely for semi-infinite solids and infinite plates, but there is no accurate analytical solution if the finite size of the plate has to be considered. By expanding displacements with eigensolutions of surface acoustic waves in a semi-inifite solid, a set of two-dimensional equations similar to the Mindlin plate theory are obtained. Then for a thin electrode layer, the effect is considered through the approximation of displacements in the metal layer with the ones in the substrate, and an integration over the thickness incorporated the properties of the metal layer into equations through the modification of material properties with the decaying indices of surface acoustic waves and the thickness of the metal layer. Using AT-cut quartz crystal as the substrate, we present the effect of silver electrode layers of finite thickness on the phase velocity of propagating surface acoustic waves.  相似文献   

2.
A closed system of surface elasticity equations was derived in terms of surface quantities defined as integrals of respective excess bulk quantities normal to the interface. The equations were consistently linearized for the case of small strains. It is shown that these equations are more general than the Shuttleworth equations. Equations of this type were also derived for the particular case of an interface formed by a thin layer with constant properties. The derived equations were used to consider bending of a plate under pressure applied to both sides.  相似文献   

3.
Dispersion relations are determined for circumferential waves propagating in a layered, circular cylinder by using shell equations to approximate the behavior of the outer layer. These equations include the effects of transverse shear deformation and rotatory inertia. The cylinder consists of an elastic core in smooth contact with a hollow, circular cylinder of distinctly different elastic properties. Two distinct modes exist as the shell thickness reduces to zero. One mode is recognized to be surface waves on the convex cylindrical surface of the core; the second mode is associated with long longitudinal waves in the shell. The approximate dispersion curves for these modes are compared with curves obtained by employing elasticity equations for the layer. As the curvature increases, the agreement of the two theories becomes progressively poorer whether or not any disagreement exists for the case of no curvature. The agreement of the two theories is better when the layer is relatively stiff than when the layer is relatively soft. The shell equations simplify the calculations necessary to produce the dispersion curves.  相似文献   

4.
The existing concepts of the boundary layer arising near the free surface of a viscous liquid, which is related to its periodic motion, are revised with the aim to calculate finite-amplitude linear oscillations of a viscous liquid charged drop. Equations complementing the boundary layer theory are derived for the vicinity of the oscillating free spherical surface of the drop. An analytical solution to these equations is found, comparison with an exact solution is made, and an estimate of the boundary layer thickness is obtained. The domain of applicability of the modified theory is defined.  相似文献   

5.
Evolutionary equations are derived and solved that describe the time dependence of the oscillation mode amplitudes on the surface of a charged conducting liquid layer resting on a solid core. It is assumed that the layer experiences a multimode initial deformation. The equations are solved asymptotically in the second order of smallness in the small dimensionless amplitude of capillary oscillations on the surface of the layer. Mechanisms behind internal nonlinear resonance interaction between the modes of the liquid layer oscillations and behind energy transfer between the modes both in degenerate and in secondary combination resonances are investigated. It is found that in the degenerate resonance interaction between oscillation modes, the energy may be transferred not only from lower to higher modes but also vice versa if the higher mode is excited at the zero time. This conclusion is valid not only for a liquid layer on the surface of a solid core but also for a drop.  相似文献   

6.
宋金宝 《中国物理》2006,15(12):2796-2803
Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618--638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interfacial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618--638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.  相似文献   

7.
Conservation equations are written for surface flows (either fluid or granular). The particularity of granular surface flows is then pointed out, namely that the depth of the flowing layer is not a priori fixed, leading to open equations. It is shown how some hypothesis on the flowing layer allows to close the system of equations. A possible hypothesis, similar to that made for a fluid layer, but inspired from granular flow experiments, is presented. The force acting on the flowing layer is discussed. Averaging over the flowing depth, as in shallow water theory, then allows to transform these conservation laws into equations for the evolution of the profile of a granular pile. Apart from their interest for building models, these conservation laws can be used to measure experimentally the effective forces acting on a flowing layer. Received 25 July 1998 and Received in final form 14 January 1999  相似文献   

8.
《Surface science》1995,326(3):L483-L488
Submonolayer epitaxy is studied with two simple theoretical models where adatom exchange with a surface atom yields a stable nucleus for island growth. The results are relevant to systems where surface layer inclusions are formed by alloying and where buried islands are formed in the presence of surfactants. Rate equations and Monte Carlo simulations are used to study the evolution of the island size distributions. The rate equations reproduce all of the qualitative features found in both the simulations and in recent experiments when the coverage-dependent rate of adatom capture by islands is calculated self-consistently.  相似文献   

9.
Nonlinear partial differential equations (consistency equations) describing equilibrium one-component adsorption from a liquid solution onto a solid surface carrying electric charges are studied analytically in a general statement taking the scalar surface deformation into account. In this case, all unknown functions may depend on all three independent arguments specifying the equilibrium thermodynamic state of the system, namely, the surface absorbate concentration, the electric potential of the solid phase, and the surface deformation. For small deformations, the isotherm equation is derived in the particular case of a surface layer construction, namely, a model of two parallel capacitors. It is shown that the surface tension can lead to the stratification of the adsorptive layer.  相似文献   

10.
11.
It is shown in this paper that the modal damping and resonant frequencies of a stiffened plate structure, with a multiple layer constrained damping treatment attached to the surface, can be predicted from a knowledge of the equivalent complex modulus properties of the treatment. The equations used represent a simple extension of the classical equations of Oberst for a free layer treatment applied to an unstiffened beam or plate, with terms accounting for the effect of the stiffeners. The equivalent complex modulus properties of the treatment depend on a shear parameter, a geometrical parameter, the stiffness of the constraining layer and the loss factor of the adhesive. Experimental results are discussed.  相似文献   

12.
The influence of mixed convection boundary layer flow of a viscoelastic fluid over an isothermal horizontal circular cylinder has been analyzed. The boundary layer equations governing the problem are reduced to dimensionless nonlinear partial differential equations and then solved numerically using Keller-box method. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities are displayed against curvature parameter. Effects of mixed convection parameter and radiation-conduction parameter on skin friction coefficient and Nusselt number are illustrated through graphs and table. The boundary layer separation points along the surface of cylinder are also calculated with/without radiation, and a comparison is shown. The presence of radiation helps to reduce the skin friction coefficient in opposing flow case and enhances it for assisting flow case. The increase in value of radiation-conduction parameter helps increase the value of skin friction coefficient and Nusselt number for viscoelastic fluids. The boundary layer separation delays due to thermal radiation.  相似文献   

13.
In the present analysis, a numerical study is performed to examine the heat transfer characteristics of a convective flow over a vertical plate under the combined effects of magnetic field and thermal radiation in the presence of heat source/sink. The surface of the plate is subjected to a variable surface temperature. The boundary layer equations governing the flow are reduced to non-dimensional equations valid in the free convection regime using the suitable non-dimensional parameters. The dimensionless governing equations are solved by an implicit finite difference method of Crank—Nicolson type which is fast convergent, more accurate and unconditionally stable. Numerical results are obtained and presented for velocity, temperature, local and average wall shear stress, local and average Nusselt number in air. The present results are compared with the results available in the literature and are found to be in an excellent agreement.  相似文献   

14.
李孝申  龚昌德 《物理学报》1988,37(9):1415-1424
本文使用表面修饰的光学Bloch方程,求得周期和准周期超晶格固体薄膜表面吸附原子的共振荧光谱,并研究了压缩效应。对该薄膜各层厚度和介电性质变化所带来的影响进行了讨论。同时,也对整个薄膜不同几何结构的影响进行了比较和分析。 关键词:  相似文献   

15.
The dynamics of the development of an instability of a charged surface of a liquid-helium layer with a finite depth is investigated. The equations describing the evolution of the free surface are derived with the use of conformal variables for the case in which the charge completely screens the electric field above the liquid. A model of the evolution of a spatially localized perturbation of a liquid-helium surface is proposed for the strong-field limit where the dynamics of the liquid is predominantly determined by the effect of electrostatic forces. This model describes the development of an instability of the initially planar boundary to the point of the formation of cuspidal dimples. The limit of an infinitely deep liquid is considered. The stability of the previously revealed liquid flow regime described by the Laplacian growth equations is proved without significant constraints on the surface geometry.  相似文献   

16.
Wang J  Du J  Lu W  Mao H 《Ultrasonics》2006,44(Z1):e941-e945
For an accurate approximation of the effect of a thin layer over a finite substrate, we consider the displacements are continuous across the interface, while the stress components are obtained from derivatives of displacements. As a result, the stress boundary conditions are transformed to a relationship between stresses in the vicinity of the interface of two layers and density of the metal layer. Through this approximation, we eventually have four equations to solve for the surface acoustic wave dispersion relation of the two-layer structure. The approximate and accurate results are compared with good agreement for small thickness of the metal layer. These results are intended for periodic structures with separate solutions for electroded and unelectroded regions, which can be connected by the continuity boundary conditions for the analysis of the complete structure of typical surface acoustic wave resonators.  相似文献   

17.
P.S Ho 《Surface science》1978,72(2):253-263
The effects of enhanced diffusion caused by sputter damage on the kinetics of preferred sputtering of alloy surfaces have been analyzed. The diffusion flux is specifically included in considering the mass balance within the altered layer and on the sputtered surface. An analytical solution has been derived by solving the two mass-balance equations simultaneously under certain conditions. The solution is used as the basis of an interative method to obtain exact numerical solutions as a function of sputtering time. The analysis enables one to define an altered layer with respect to the steady state and to express its thickness in terms of the sputter yields and the diffusivity. Illustrative results showing the evolution of the altered layer during sputtering are given for a typical binary alloy surface. Implications of this analysis and possible future experiments are discussed.  相似文献   

18.
Here magnetohydrodynamic (MHD) two-dimensional (2D) flow of an incompressible Burgers material bounded by a permeable stretched surface is addressed. The boundary layer flow equations are modelled. Heat transfer is discussed for power law heat flux at the surface and heat source. Convergent series solutions are constructed. Clarification of different emerging variables is presented through graphs of velocity, temperature and local Nusselt number. The present solutions are matched with the available published work in a limiting case.  相似文献   

19.
Rayleigh type surface wave propagation in the irregular bottom of ocean model which is the interface of homogeneous liquid layer over laying an irregular boundary of homogeneous orthotropic half space under initial stresses has been discussed in this paper. Three different dispersion equations are obtained in the form of simple equation using and not using Perturbation technique. Some special cases have been considered. The effect of irregularity, initial stressed, point source, and depth of liquid layer on the propagation of Rayleigh waves has been analyzed and results of numerical discussion have been presented graphically for three different dispersion equations. Mainly the graphs are shown the variation of phase velocity with wave number in different cases.  相似文献   

20.
Quasi-static surface wave propagation in a plasma layer with anisotropic electron temperature is considered. The case is analyzed where the electron temperature in the direction normal to the plasma boundary is considered to be zero, while in the direction along the boundary, electrons are described by the Maxwellian velocity distribution. It is shown that the modes of such a layer are described by equations for bulk plasma waves with renormalization of the electron density affecting the surface wave dispersion and damping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号