首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of high-performance supercapacitor electrode materials is imperative to alleviate the ongoing energy crisis. Numerous transition metals (oxides) have been studied as electrode materials for supercapacitors owing to their low cost, environmental-friendliness, and excellent electrochemical performance. Among the developed binary transition metal oxides, manganese cobalt oxides typically show high theoretical capacitance and stable electrochemical performance, and are widely used in the electrode materials of supercapacitors. However, the poor conductivity and active material utilization of manganese cobalt oxide-based electrode materials limit their potential capacitance application. Cotton is mainly composed of organic carbon-containing materials, which can be transformed to carbon fibers after calcination. The resultant carbonaceous material exhibits a large specific surface area and good conductivity. Such advantages could potentially suppress the negative effects caused by the poor conductivity and small specific surface area of manganese cobalt oxides, thereby improving the electrochemical performance. Herein, we firstly deposited manganese cobalt oxides on cotton by a simple hydrothermal method, yielding a composite of manganese cobalt oxides and carbon fibers via subsequent calcination, to improve the electrochemical performance of the electrode material. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and electrochemical characterizations were used to investigate the physical, chemical, and electrochemical properties of the prepared samples. The fabricated manganese cobalt oxides in the composite were uniformly dispersed on the carbon fiber surface, which increased the contact between the interface of the electrode material and electrolyte, and enhanced electrode material utilization. The electrode material was confirmed to have well contacted with the electrolyte during a contact angle test. Hence, a pseudo-capacitance reaction completely occurred on the manganese cobalt oxide material. Moreover, the addition of carbon fibers reduced the resistance of the material, resulting in excellent capacitive performance. The capacitance of the prepared composite was 854 F∙g-1 at a current density of 2 A∙g-1. The capacitance was maintained at 72.3% after 2000 cycles at a current density of 2 A∙g-1. These results indicate that the manganese cobalt oxide and carbon fiber composite is a promising electrode material for high-performance supercapacitors. The findings presented herein provide a strategy for coupling with carbon materials to enhance the performance of supercapacitor electrode materials based on manganese cobalt oxides. Thus, novel insights into the design of high-performance supercapacitors for energy management are provided.  相似文献   

2.
Electrochemical electrodes incorporating double- and single-walled carbon nanotubes (CNTs) were fabricated on cysteamine modified flat gold substrates. Through covalent coupling of the amine end groups with carboxyl functionalized CNTs, a dense forest of vertically aligned CNTs was produced. To these a 30 nm thick insulating polystyrene layer was spin coated, resulting in exposure of the uppermost carbon nanotube ends. The electrochemical performance of each electrode was then determined using the redox probe ruthenium hexaamine. Once surrounded by polymer, the double-walled CNTs (DWCNTs) showed an improved electron transfer rate, compared to the single-walled electrode. This improvement was attributed to the protection of the electronic properties of the inner wall of the DWCNT during the chemical modification and suggests that DWCNTs may offer a useful alternative to SWCNTs in future electrochemical sensors and biosensors.  相似文献   

3.
采用电化学沉积方法将印迹溶胶-凝胶膜沉积到功能化碳纳米管(MWNT-COOH)修饰的碳电极表面,成功研制一种新型多壁碳纳米管/白藜芦醇印迹溶胶-凝胶电化学传感器.采用扫描电镜(SEM),循环伏安法(CV),方波伏安法(SWV)和计时电流法(i-t)详细考察该印迹溶胶-凝胶膜的形态和电化学性能.结果表明该传感器对白藜芦醇具有较高的选择性和亲和性.与无多壁碳纳米管修饰的印迹传感器比较,MWNT层修饰的印迹传感器电流响应信号明显提高.白藜芦醇与印迹溶胶-凝胶膜的特异性结合使该传感器的电流发生变化,电流变化与白藜芦醇浓度在5.0×10-7~8.0×10-5mol?L-1范围内呈良好线性关系,检测限为5.1×10-8mol?L-1,该传感器成功应用于葡萄酒中白藜芦醇含量的检测.  相似文献   

4.
Electrochemical polymerization of N-vinyl carbazole (VK) on carbon nanotube (CN) films was studied by cyclic voltammetry in LiClO4/acetonitrile solutions. Cyclic voltammograms recorded on a blank Pt electrode were compared with those obtained when single or multi-walled CN films were deposited on the Pt electrode; in the latter case, a down-shift of the VK reduction peak potential was observed. Functionalization of CNs with poly(N-vinyl carbazole) (PVK) was invoked by Raman scattering and UV-VIS-NIR spectroscopic studies. The influence of sweep rate on the electrochemical properties of the PVK/CN nanocomposite and the performance of supercapacitors constructed using PVK-functionalized single-walled carbon nanotube electrodes were also evaluated.  相似文献   

5.
Recently, different carbon nanomaterials were introduced for construction of electrochemical sensors. In this study, the influence of carbon nanomaterial on performance of carbon paste potentiometric electrode was investigated. In this manner, different kinds of carbon nanomaterial, i.e., graphene, graphene oxide and carbon nanotube (CNT) were used as a conduction phase in carbon paste electrode. Then, potentiometric characteristics of the corresponding paste electrodes such as calibration slope, linear range, detection limit, response time and stability were compared with each other. The results appeared comprehensive findings about the role of electrode’s content in electrochemical performance.  相似文献   

6.
The electrochemical detection of one of the most sought after analytical targets has been studied at single-walled carbon nanotube ensemble networks, which are electrically wired via an underlying electrode substrate. A range of parameters and their effect on the electro–analytical detection of hydrogen peroxide have been explored which includes heterogeneity, role of the underlying electrode, electrode pre-treatment and analytical performance. This work provides researches with an overall view of the various parameters, which may affect the electro–analytical detection of hydrogen peroxide at native carbon nanotubes before modification with electro–catalytic materials allowing the assignment of the true origin of electro–catalysis to be properly assigned.  相似文献   

7.
Pejcic B  Myers M  Ranwala N  Boyd L  Baker M  Ross A 《Talanta》2011,85(3):1648-1657
This report compares the performance of polymer and carbon nanotube-polymer composite membranes on a quartz crystal microbalance (QCM) sensor for the detection of aromatic hydrocarbons (benzene, toluene, ethylbenzene, p-xylene and naphthalene) in aqueous solutions. Several different polymers (polystyrene, polystyrene-co-butadiene, polyisobutylene and polybutadiene) and types of functionalized carbon nanotubes (multi-walled and single-walled carbon nanotubes) were investigated at varying carbon nanotube (CNT) loading levels and film thicknesses. In a majority of instances, the difference in response between membranes comprising pure polymer and membranes containing 10% (w/w) carbon nanotubes were not statistically significant. However, a notable exception is the decreasing sensitivity towards p-xylene with increasing carbon nanotube content in a polybutadiene film. This variation in sensitivity can be attributed to a change in the sorption mechanism from absorption into the polymer phase to adsorption onto the carbon nanotube sidewalls. With much thicker coatings of 10% (w/w) carbon nanotube in polybutadiene, the sensitivity towards toluene was higher compared to the pure polymer. The increased toluene sensitivity may be partially attributed to an increase in the sorption capacity of a carbon nanotube polymer composite film relative to its corresponding pure polymer film. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurements were performed to understand the mechanism of sorption and these studies showed that the addition of functionalized CNT to the polymer increases the absorption of certain types of hydrocarbons. This study demonstrates that carbon nanotubes can be incorporated into a polymer-coated QCM sensor and that composite films may be used to modify the QCM response and selectivity during the analysis of complex hydrocarbon mixtures.  相似文献   

8.
低热固相法制备纳米MnO2/CNT超电容复合电极的循环稳定性   总被引:1,自引:0,他引:1  
为了改善纳米MnO2超级电容器电极的充放电循环稳定性,以Mn(OAc)2·4H2O、NH4HCO3和碳纳米管(CNT)为原料,采用低热固相反应得到前驱体,再经焙烧和酸处理,制备了一系列CNT含量不同的纳米MnO2/CNT复合电极材料,并用X射线衍射(XRD)、透射电镜(TEM)和Brunauer-Emmett-Teller(BET)比表面积测定方法对其进行了表征.XRD分析结果表明,复合材料中的MnO2为纳米γ-MnO2.研究了复合电极在1 mol·L-1 LiOH电解质中的电化学性能,并与不含CNT的纯纳米MnO2电极进行了比较.结果表明,含CNTs为10%(w,质最分数,下同)和20%的MnO2/CNT复合电极的循环稳定性远优于纯纳米MnO2电极的循环稳定性,其中含10%CNTs的MnO2/CNT复合电极不仪具有良好的循环稳定性,而且在1000 mA·g-1高倍率充放电条件下仍具有200 F·g-1的高比电容.  相似文献   

9.
以单壁碳纳米管作为电极材料,基于减压过滤和电聚合方法制备了一种薄膜型一氧化氮(NO)电化学传感器。扫描电镜、红外光谱和电化学交流阻抗表征表明,减压过滤可以制备出导电性好、电分析性能优良的薄膜电极,而罗丹明B能通过电聚合在其表面形成高比表面的纳米敏感结构。这种薄膜型电化学传感器对NO具有灵敏的电化学响应,其安培氧化电流与NO浓度在7.2×10-8~2.5×10-5mol/L范围内呈良好的线性关系,检出限(S/N=3)达3.6×10-8mol/L。将该传感器紧贴在麻醉豚鼠的肝脏表面,成功实现了肝组织细胞在L-精氨酸刺激下NO释放的实时监测。  相似文献   

10.
Present study describes the synthesis of mixed oxide films of manganese and vanadium by electrochemical pulsed deposition technique on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT). The film was further decorated with gold nanoparticles to enhance the reduction signal of dissolved oxygen in pH 5.17 acetate buffer solution. All of the electrochemical synthesized modified electrodes have been characterized with Scanning electron microscopy(SEM), High‐resolution transmission electron microscopy (HRTEM), X‐Ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) techniques. The electrode obtained (AuNPs/MnOx?VOx/CNT/GCE) was utilized as a platform for glucose biosensor where the glucose oxidase enzyme was immobilized on the composite film with the aid of chitosan and an ionic liquid. The electrochemical performance of the biosensor was investigated by cyclic voltammetry and the relative parameters have been optimized by amperometric measurements in pH 5.17 acetate buffer solution. The developed biosensor exhibited a linear range for glucose between 0.1–1.0 mM and the limit of detection was calculated as 0.02 mM.  相似文献   

11.
We controlled the morphologies of zinc oxide (ZnO) nanostructures on single-walled carbon nanotube electrodes by an electrochemical deposition method and investigated the dependence of the electrocatalytic characteristics toward hydrazine on the different morphologies. ZnO nanorods provided high electrocatalytic activity with unique electrochemical behaviours, associated with the H(+) ion generated by the electro-oxidation of hydrazine.  相似文献   

12.
以多壁碳纳米管/氮化钒复合材料(MWCNT-VN)作为锂硫电池正极载体材料,利用VN的空心结构储存硫和限制多硫化物的穿梭效应。另外,MWCNT形成了一个导电网络,进一步提升了正极的导电性能。在1C的电流密度下,VN/S电极与MWCNT-VN/S电极的初始放电比容量分别为702.2和809.3 mAh·g~(-1),经过350圈循环后,每圈衰减量均小于0.1%。与单纯VN/S相比,所得MWCNT-VN复合材料的电化学性能均有提升,如较高的锂离子迁移率、稳定的倍率性能和长循环稳定性。  相似文献   

13.
The microstructure and absorption/desorption characteristics of composite MgH2 and 5 wt % as-prepared single-walled carbon nanotubes (MgH2-5ap) obtained by the mechanical grinding method were investigated. Experimental results show that the MgH2-5ap sample exhibits faster absorption kinetics and relatively lower desorption temperature than pure MgH2 or MgH2-purified single-walled carbon nanotube composite. Storage capacities of 6.0 and 4.2 wt % hydrogen for the MgH2-5ap composite were achieved in 60 min at 423 and 373 K, respectively. Furthermore, its desorption temperature was reduced by 70 K due to the introduction of as-prepared single-walled carbon nanotubes (SWNTs). In addition, the different effects of SWNTs and metallic catalysts contained in the as-prepared SWNTs were also investigated and a hydrogenation mechanism was proposed. It is suggested that metallic particles may be mainly responsible for the improvement of the hydrogen absorption kinetics, and SWNTs for the enhancement of hydrogen absorption capacity of MgH2.  相似文献   

14.
应用电化学法聚合酚藏花红(PPS)功能化的单壁碳纳米管,以其作为烟酰胺辅酶(NADH)氧化的电化学催化剂(电极),构建基于乙醇脱氢酶的安培型乙醇生物电化学传感器.该电极于0.0 V时,对NADH具有很好的催化性能.而单体酚藏花红则由于其电位过低(-0.48 V),不能显示催化性能.循环伏安和计时安培法测试表明:该传感器...  相似文献   

15.
纳米材料修饰电极在电化学分析中的应用研究进展   总被引:1,自引:0,他引:1  
陈丽娟 《化学研究》2010,21(5):103-106
综述了纳米材料修饰电极在电化学分析中的应用研究.主要总结了国内外纳米金属材料、纳米金属氧化物材料、碳纳米管与碳纳米管复合物以及其他纳米材料在电化学分析中的应用研究,并指出了纳米材料修饰电极在电化学分析应用中存在的问题.  相似文献   

16.
A detailed study is presented on the optical absorption of thin films of single-walled carbon nanotubes (SWNT) under electrochemical conditions. The procedure for the preparation of free-standing semitransparent films of SWNT is used for the fabrication of a working electrode for transmission optical spectroelectrochemistry. The analysis of the potential dependent spectroscopic response of the SWNT film benefits from the widest possible electrochemical window, in which the charging of SWNT can safely be investigated. This electrochemical window is not limited by parasitic electrochemistry and/or galvanic breakdown reactions occurring at supporting electrode materials such as indium–tin oxide conducting glass or semitransparent Pt film, which were employed in earlier studies. Electrochemical doping of SWNT is observable at the optical absorptions, which are assigned to allowed electronic transitions between van Hove singularities in the density of states of SWNT. Furthermore, the spectral response of counterions, balancing the charging of the nanotube skeleton, is traceable at certain conditions. The latter effect is monitored here through the overtones of C–H stretching vibrations from tetrabutylammonium cations.  相似文献   

17.
何正文  江奇  杨荣  亓鹏  赵斐  袁华  赵勇 《物理化学学报》2010,26(5):1214-1218
利用直流电电化学沉积法将生长碳纳米管(CNT)的催化剂镍均匀地附着在石墨电极(GE)表面,再通过化学气相沉积法制备得到原位生长碳纳米管化学修饰电极(GSCNT-CME).电化学沉积的金属镍和所制备的修饰电极分别用光学显微镜、扫描电子显微镜(SEM)和电子能谱(EDX)进行表征,所得修饰电极的电化学性能用[Fe(CN)6]3-/[Fe(CN)6]4-溶液进行表征.结果表明:经直流电电化学沉积,可以在石墨电极表面沉积一层致密的金属镍,能生长出管径均匀的碳纳米管,所制得的修饰电极具有良好的电化学响应灵敏性和准确性,可在电化学检测领域发挥重要的应用.  相似文献   

18.
Different graphitic carbon-based electrode materials were evaluated for direct electro-oxidation of clindamycin and electroanalytical parameters such as sensitivity, residual background current, and signal-tobackground current ratio were compared to select the best one for the clindamycin electroanalysis. Such electrode materials include glassy carbon, carbon paste, pyrolytic graphite (edge-plane and basal-plane), carbon nanotube, reduced graphene oxide, and carbon black. The edge-plane pyrolytic graphite electrode after a simple and fast electrochemical pretreatment showed superior performance compared with the other carbon electrodes. Raman and Fourier transform infrared spectroscopy were employed to analyze the surface microstructure and chemical bonding of the carbon materials and scanning electron microscopy was used to study their surface morphologic features. The applicability of the electrochemically activated edge-plane pyrolytic graphite electrode for the determination of clindamycin in pharmaceutical formulations and human urine samples was evaluated.  相似文献   

19.
The use of single-walled carbon nanotubes (CNT) thin films to replace conventional fluorine-doped tin oxide (FTO) and both FTO and platinum (Pt) as the counter electrode in dye sensitized solar cells (DSSC) requires surface modification due to high sheet resistance and charge transfer resistance. In this paper, we report a simple, solution-based method of preparing FTO-free counter electrodes based on metal (Pt) or metal sulfide (Co(8.4)S(8), Ni(3)S(2)) nanoparticles/CNT composite films to improve device performance. Based on electrochemical studies, the relative catalytic activity of the composite films was Pt > Co(8.4)S(8) > Ni(3)S(2). We achieved a maximum efficiency of 3.76% for the device with an FTO-free counter electrode (Pt/CNT). The device with an FTO- and Pt-free (CoS/CNT) counter electrode gives 3.13% efficiency.  相似文献   

20.
氧化钌/活性炭超电容器复合电极的电化学行为   总被引:15,自引:4,他引:15  
电化学超电容器作为一种新一代储能系统具有广泛的应用领域. 直流充放电、循环伏安以及交流阻抗等实验显示了本文制备的活性碳材料以及复合电极材料具有良好的电化学性能.活性碳材料的质量比容量为172 F•g-1,采用无定形RuO2与上述活性碳复合制成的新型电极材料具有359 F•g-1以上的比容量和良好的功率特性,并对上述材料的双电层电容和法拉第准电容等电化学特性进行了详细的讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号