首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
The deformation of a thin liquid film in the presence of a surfactant monolayer, varying temperature distributions, and limited mass flux is considered. Use of lubrication theory yields a coupled pair of partial differential equations for the film height and surfactant surface monolayer concentration. The long-wave stability of the isothermal film is examined over a wide range of parameter values. It is shown that droplet patterns are obtained under certain thermal conditions for both an isothermal and nonisothermal underlying substrate. For the case of a localized thermal gradient initially imposed at the air-liquid interface, severe film thinning beneath the heat source was observed, which was not accompanied by droplet formation; pseudo steady states are observed in this case. In all situations the surfactant is found to rigidify the air-liquid interface, retarding thermally driven flow, while evaporation (condensation) acts to destabilize (stabilize) the film.  相似文献   

2.
Stratification of a foam liquid film drawn from aqueous solutions of sodium naphthenate at relatively high concentration is likely due to a lamellar liquid crystal-like structure within the film. Film stratification, resulting in stepwise thinning, has been observed in foam films formed from systems containing either moderate to high concentrations of surfactant or in films formed from solutions containing solid particles. At moderate surfactant concentrations, film stratification is likely due to layers of ordered spherical micelles as postulated in Wasan and Nikolov's model of film stratification. At high surfactant concentrations, stepwise thinning of the films and occurrence of domains of uniform color within the film suggest a lamellar liquid crystal-like structure within the film, potentially up to hundred or more oriented layers. The LLC-like structure inside the film can occur at concentrations below the lower limit of the LLC existence as a bulk phase.  相似文献   

3.
A study of Marangoni-driven local continuous film drainage between two drops induced by an initially nonuniform interfacial distribution of insoluble surfactant is reported. Using the lubrication approximation, a coupled system of fourth-order nonlinear partial differential equations was derived to describe the spatio-temporal evolution of the continuous film thickness and surfactant interfacial concentration. Numerical solutions of these governing equations were obtained using the Numerical Method of Lines with appropriate initial and boundary conditions. A full parametric study was undertaken to explore the effect of the viscosity ratio, background surfactant concentration, the surface Péclet number, and van der Waals interaction forces on the dynamics of the draining film for the case where surfactant is present in trace amounts. Marangoni stresses were found to cause large deformations in the liquid film: Thickening of the film at the surfactant leading edge was accompanied by rapid and severe thinning far upstream. Under certain conditions, this severe thinning leads directly to film rupture due to the influence of van der Waals forces. Time scales for rupture, promoted by Marangoni-driven local film drainage were compared with those associated with the dimpling effect, which accompanies the approach of two drops, and implications of the results of this study on drop coalescence are discussed. Copyright 2001 Academic Press.  相似文献   

4.
界面流变性质对小液滴聚并过程的影响   总被引:2,自引:0,他引:2  
对表面活性剂溶液中两个小液滴的聚并现象进行理论分析,并考虑相界面上质量传递对该过程的影响,得到聚并时间与界而张力和界面张力梯度、界面粘度、表面活性剂界面扩散系数、连续相和分散相的主体性质、范德华力及液滴半径的关系.  相似文献   

5.
A bamboo foam is the simplest case of an ordered foam confined in a narrow channel. It is made of a regular film distribution, arranged perpendicularly to the channel. Our work consists of studying the structural properties of several films taken in a drained foam. X-ray experiments highlighted the equality of the equilibrium thickness for each film within a foam. The same thickness was found as by measurements of disjoining pressure isotherms, proving as well that films of a bamboo foam behave like isolated ones. The refinement of X-ray data by a simple model of specular reflectivity showed a significant variation of the electronic distribution of the surfactant layer for a common black film forwarding from one equilibrium state to another. A discussion on the organization of the surfactant molecules to the gas/liquid interface and film is proposed.  相似文献   

6.
Lateral non-uniformities in surfactant distribution in drying latex films induce surface tension gradients at the film surface and lead to film thinning through surfactant spreading. Here we investigate the influence of the surfactant driven to the air-water interface, during the early stages of latex film drying, on the film thinning process which could possibly lead to film rupture. A film height evolution equation is coupled with conservation equations for particles and surfactant, within the lubrication approximation, and solved numerically, to obtain the film height, particle volume fraction, and surfactant concentration profiles. Parametric analysis identifies the effect of drying rate, dispersion viscosity and initial particle volume fraction on film thinning and reveals the conditions under which films could rupture. The results from surface profilometry conform qualitatively to the model predictions.  相似文献   

7.
FTIR-ATR (Fourier Transform Infra-Red-Attenuated Total Reflection) has been used to analyze the surface composition of coalesced acrylic latex films. The behavior of two anionic surfactants has been characterized. It has been found that surfactant distribution depends on the nature of the surfactant. A comparison between the normalized absorbance in transmission and in reflection has shown an enrichment of surfactants at the surfaces of films with a coalescence time of 3 days. The surfactant concentration at the film-air interface is higher than at the film substrate interface. A concentration gradient exists through the film thickness. In addition, the incompatible surfactant migrates towards the interface as coalescence proceeds.  相似文献   

8.
We present a large range of experimental data concerning the influence of surfactants on the well-known Landau-Levich-Derjaguin experiment where a liquid film is generated by pulling a plate out of a bath. The thickness h of the film was measured as a function of the pulling velocity V for different kinds of surfactants (C(12)E(6), which is a nonionic surfactant, and DeTAB and DTAB, which are ionic) and at various concentrations near and above the critical micellar concentration (cmc). We report the thickening factor α = h/h(LLD), where h(LLD) is the film thickness obtained without a surfactant effect, i.e., as for a pure fluid but with the same viscosity and surface tension as the surfactant solution, over a wide range of capillary numbers (Ca = ηV/γ, with η being the surfactant solution viscosity and γ its surface tension) and identify three regimes: (i) at small Ca α is large due to confinement and surface elasticity (or Marangoni) effects, (ii) for increasing Ca there is an intermediate regime where α decreases as Ca increases, and (iii) at larger (but still small) Ca α is slightly higher than unity due to surface viscosity effects. In the case of nonionic surfactants, the second regime begins at a fixed Ca, independent of the surfactant concentration, while for ionic surfactants the transition depends on the concentration, which we suggest is probably due to the existence of an electrostatic barrier to surface adsorption. Control of the physical chemistry at the interface allowed us to elucidate the nature of the three regimes in terms of surface rheological properties.  相似文献   

9.
10.
A theoretical and numerical model is presented for the shape evolution of the thin liquid films separating the gas bubbles in a foam. The motion is due to capillary action, surface tension gradients, and the overall expansion of the foam. The expansion is the result of the increase in gas content with time. Process modeling is accomplished via the solution of three coupled partial differential equations. Two time scales are included in the model: a process time and a drying or curing time. It is demonstrated that the amount of surfactant is the dominant control mechanism for the final film thickness. If sufficient surfactant is present, the films will be shown to dilate uniformly in space. A number of known features of expanding foams are reproduced by the model.  相似文献   

11.
The forces acting between nonpolar surfaces coated with the nonionic surfactant n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) were investigated at concentrations below and above the critical micelle concentration. The long-range and adhesive forces were measured with a bimorph surface force apparatus (MASIF). It was found that the effect of hydrodynamic interactions had to be taken into account for an accurate determination of the short-range static interactions. The results were compared with disjoining pressure versus thickness curves that were obtained earlier with a thin film pressure balance (TFPB). This comparison led to the conclusion that the charges observed at the air-water interface are not due to charged species present in the surfactant sample. In addition, it was observed that the stability of thin liquid films crucially depends on the surfactant's bulk concentration (c) and thus on the packing density in the adsorbed layer. The force barrier preventing removal of the surfactant layer from between two solid-liquid interfaces increases with increasing c, while for foam films it is the stability of the Newton black film that increases with c. Finally, the results obtained for beta-C(12)G(2) were compared with those obtained for the homologue n-decyl-beta-d-maltoside (beta-C(10)G(2)) as well as with those obtained for nonionic surfactants with polyoxyethylene moieties as polar groups.  相似文献   

12.
Adsorption of water-soluble, zwitterionic n-hexadecylphosphorylcholine (C(16)PC) amphiphiles has been examined at the hexadecane-aqueous solution interface using neutron reflectivity (NR) and interfacial tension measurements. The results of both methods indicate that the limiting area per surfactant molecule at the interface at the critical micelle concentration (cmc) is 40 +/- 5 Angstroms(2). In the NR measurements, two isotopic contrasts have been employed to determine the adsorption isotherm and to explore the structure of the interfacial region. Single-layer model fitting to both isotopic contrasts was only possible for the single sub-cmc concentration studied, where a film thickness of 60 +/- 5 Angstroms was obtained; consistent single-layer model fits to both contrasts for concentrations greater than the cmc were not possible, leading to the requirement of a two-layer model with an overall film thickness close to 60 +/- 2 Angstroms. This film thickness is appreciably greater than the fully extended C(16)PC molecular length and cannot be explained purely in terms of thermal broadening. A further result is that the reflectivity data indicate that, as the C(16)PC concentration increases, the amount of water on the hexadecane side of the interfacial region increases, in contrast to intuitive expectation. These findings are interpreted by conjecturing a structural model in which a trilayer of C(16)PC molecules is formed at the interface with the water concentrated in the region occupied by the headgroups.  相似文献   

13.
The interactions between nonpolar surfaces coated with the nonionic surfactant hexaoxyethylene dodecyl ether C12E6 were investigated using two techniques and three different types of surfaces. As nonpolar surfaces, the air/water interface, silanated negatively charged glass, and thiolated uncharged gold surfaces were chosen. The interactions between the air/water interfaces were measured with a thin film pressure balance in terms of disjoining pressure as a function of film thickness. The interactions between the solid/liquid interfaces were determined using a bimorph surface force apparatus. The influence of the nature of the surface on the interaction forces was investigated at surfactant concentrations below and above the cmc. The adsorption of the nonionic surfactant on the uncharged thiolated surface does not, as expected, lead to any buildup of a surface charge. On the other hand, adsorption of C12E6 on the charged silanated glass and the charged air/water interface results in a lowering of the surface charge density. The reduction of the surface charge density on the silanated glass surfaces is rationalized by changes in the dielectric permittivity around the charged silanol groups. The reason for the surface charge observed at the air/water interface as well as its decrease with increasing surfactant concentration is discussed and a new mechanism for generation of OH- ions at this particular interface is proposed.  相似文献   

14.
Moisture absorption in model photoresist films of poly(4-hydroxystryene) (PHOSt) and poly(tert-butoxycarboxystyrene) (PBOCSt) supported on silicon wafers was measured by X-ray and neutron reflectivity. The overall thickness change in the films upon moisture exposure was found to be dependent upon the initial film thickness. As the film becomes thinner, the swelling is enhanced. The enhanced swelling in the thin films is due to the attractive nature of the hydrophilic substrate, leading to an accumulation of water at the silicon/polymer interface and subsequently a gradient in concentration from the enhancement at the interface to the bulk concentration. As films become thinner, this interfacial excess dominates the swelling response of the film. This accumulation was confirmed experimentally using neutron reflectivity. The water rich layer extends 25 +/- 10 A into the film with a maximum water concentration of approximately 30 vol %. The excess layer was found to be polymer independent despite the order of magnitude difference in the water solubility in the bulk of the film. To test if the source of the thickness dependent behavior was the enhanced swelling at the interface, a simple, zero adjustable parameter model consisting of a fixed water rich layer at the interface and bulk swelling through the remainder of the film was developed and found to reasonably correspond to the measured thickness dependent swelling.  相似文献   

15.
Experiments and modeling of the drainage of the thin liquid film between two deformable spherical drops approaching each other at constant velocity in another liquid are being presented. Two numerical models based on the lubrication theory have been developed considering the cases of immobile or mobile drop interfaces. The absolute film thickness and the thinning rate have been measured using laser interferometry for a wide range of capillary numbers. In all studied cases, the model with immobile interfaces was found to give the best predictions of the experimental time evolution of the film thickness and radial expansion. These results made it possible to derive a typical time scale of the drainage process. Copyright 2000 Academic Press.  相似文献   

16.
Previous experimental work has shown that the spreading of a drop of aqueous anionic surfactant solution on a liquid film supported by a negatively charged solid substrate may give rise to a fingering instability (Afsar-Siddiqui, A. B.; Luckham P, F.; Matar, O. K. Langmuir 2003, 19, 703-708). However, upon deposition of a cationic surfactant on a similarly charged support, the surfactant will adsorb onto the solid-liquid interface rendering it hydrophobic. Water is then expelled from the hydrophobic regions, causing film rupture and dewetting. In this paper, experimental results are presented showing how the surfactant concentration and film thickness affect the dewetting behavior of aqueous dodecyltrimethylammonium bromide solutions. At low surfactant concentrations and large film thicknesses, the film ruptures at a point from which dewetting proceeds. At higher concentrations and smaller film thicknesses, the ruptured region is annular in shape and fluid moves away from this region. At still higher concentrations and smaller film thicknesses, the deposited surfactant forms a cap at the point of deposition that neither spreads nor retracts. This variation in dewetting mode is explained by considering the relative Marangoni and bulk diffusion time scales as well as the mode of assembly of the surfactant adsorbed on the solid surface.  相似文献   

17.
The evaporation rate of water molecules across three kinds of interfaces (air/water interface (1), air/surfactant solution interface (2), and air/water interface covered by insoluble monolayer (3)) was examined using a remodeled thermogravimetric balance. There was no difference in both the evaporation rate and the activation energy for the first two interfaces for three types of surfactant solutions below and above the critical micelle concentration (cmc). This means that the molecular surface area from the Gibbs surface excess has nothing to do with the evaporation rate. In the third case, the insoluble monolayer of 1-heptadecanol decreased the evaporation rate and increased the activation energy, indicating a clear difference between an insoluble monolayer and an adsorbed film of soluble surfactant. This difference was substantiated by BAM images, too. The images of three surfactant solution interfaces were similar to that of just the water surface, while distinct structures of molecular assemblies were observed for the insoluble monolayer. The concentration profile of water molecules in an air/liquid interfacial region was derived by Fix's second law. The profile indicates that a definite layer just beneath the air/liquid interface of the surfactant solution is made mostly of water molecules and that the layer thickness is a few times the root-mean-square displacement %@mt;sys@%%@rl;;@%2%@ital@%Dt%@rsf@%%@rlx@%%@mx@% of the water molecules. The thickness was found to be more than a few nanometers, as estimated from several relaxation times derived from the other kinetics than evaporation of amphiphilic molecules in aqueous systems and a maximum evaporation rate of purified water.  相似文献   

18.
The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.  相似文献   

19.
We use dissipative particle dynamics (DPD) and molecular models to simulate interacting oil/water/surfactant interfaces. The system comprises sections of two emulsion droplets separated by a film. The film is in equilibrium with a continuous phase, in analogy with the surface force apparatus. This is achieved by combining DPD with a Monte Carlo scheme to simulate a muVT ensemble. The setup enables the computation of surface forces as a function of the distance between the two interfaces, as well as the detection of film rupture. We studied monolayers of nonionic model surfactants at different densities and compared oil-water-oil and water-oil-water emulsion films. Between surfactant monolayers facing each other tails-on (water-oil-water films), we observed repulsive forces due to the steric interaction between overlapping hydrophobic tails. The repulsion increases with surfactant density. Conversely, no such repulsion is observed between surfactant monolayers facing each other heads-on. Instead, the film ruptures, the monolayers merge, and a channel forms between the two droplet phases. Film rupture can also be induced in the water-oil-water films by forcing the interfaces together. The separation at rupture increases for oil-water-oil films and decreases for water-oil-water films when the surfactant density increases. The results are in qualitative agreement with existing theories of emulsion stability in creams, in particular with the channel nucleation theory based on the natural curvature of surfactants.  相似文献   

20.
Recent experiments (Afsar-Siddiqui, A. B.; Luckham, P. F.; Matar, O. K. Langmuir 2004, 20, 7575-7582) on the spreading of aqueous droplets containing cationic surfactants over thin aqueous films supported by negatively charged substrates demonstrated trends in the spreading behavior with either increasing surfactant concentration or increasing film thickness. Although the substrate is initially hydrophilic and the droplet spreads, surfactant adsorption at the substrate renders it hydrophobic leading to droplet retraction. We generate a model here using lubrication theory that allows the effect of the surfactant on the wettability to be taken into account. Our numerical results show that due to basal adsorption of surfactant at the interface, the initially hydrophilic solid substrate is rendered hydrophobic. This then drives droplet retraction and dewetting, which is in agreement with the experimentally observed trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号