首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ozone has been reacted with phenol in thin supported layers, and the dynamics of this reaction has been investigated. The stoichiometry of this reaction coincides with the stoichiometry of the same reaction in solution. Specific reaction rate (β) has been determined for various phenol conversions. The effective rate constant of the reaction, estimated by extrapolating β to zero reaction time, is significantly higher than the rate constant of the reaction in solution. The reaction between ozone and phenol is diffusion-controlled. The reaction products form a barrier layer, which protects the deeper phenol layers against ozone. The barrier layer is as thick as 8–15 phenol monolayers.  相似文献   

2.
Theoretical studies of a drop moving under condensation from the surrounding vapor, have been provided. Two cases are considered. In the first, the rate of condensation is large that the drop "moves" because condensation has changed its dimensions. The model provided here shows that the rate of spreading is a constant, proportional to the heat flux and inversely proportional to the macroscopic contact angle. This compares well with available experimental data. The other model where the rate of condensation is small, is taken from existing results and comes close to explaining one set of experimental data. It is based on the use of viscous forces as the primary rate mechanism. Its shortcomings have been discussed.  相似文献   

3.
The density functional theory of inhomogeneous simple fluids is extended to an Ising magnetic fluid in contact with a solid surface, which is subjected to an external uniform or nonuniform magnetic field. The system is described by two coupled integral equations regarding the magnetic moment and fluid density distributions. The dependence of the contact angle that a nanodrop makes with the solid surface on the parameters involved in the magnetic interactions between the molecules of fluid and between the molecules of fluid and an external magnetic field is calculated. For the uniform magnetic field, the contact angle increases with increasing magnetic field, approaching an asymptotic value that depends on the strength of the fluid-fluid magnetic interactions. In the nonuniform field generated by a permanent magnet, the contact angle first increases with increasing magnetic field B(M) and then decreases, with the decrease being almost linear for large values of B(M). The obtained results are in qualitative agreement with the experimental data on the contact angle of magnetic drops on a solid surface available in the literature.  相似文献   

4.
Bound states of solute molecules just out of the liquid surface for certain kinds of solutions are shown to exist. The surface layer formed by the solute molecules can be solid. This is confirmed by experimental evidence.  相似文献   

5.
Linear stability analysis for a film on a solid surface with a viscoelastic air-liquid interface is presented. The interfacial dilatational and shear viscoelastic properties were described by Maxwell models. Dilatational and shear interfacial elasticity and viscosity were shown to improve film stability. When the interfacial rheological properties are extremely large or small, the maximum perturbation growth coefficient is shown to reduce to those for immobile and mobile interfaces respectively. Calculated values of maximum growth coefficient for thin film stabilized by 0.5% beta-lactoglobulin approached those of mobile films for thick (>2000 nm) and those for immobile films for thin (<100 nm) films respectively with the values lying between the two limits for intermediate film thicknesses.  相似文献   

6.
It is well-known that hydrodynamic pressures in a thin draining liquid film can cause inversion of the curvature of a drop or bubble surface as it approaches another surface, creating a so-called "dimple". Here it is shown that a more complicated rippled shape, dubbed a "wimple", can be formed if a fluid drop that is already close to a solid wall is abruptly pushed further toward it. The wimple includes a central region in which the film remains thin, surrounded by a ring of greater film thickness that is bounded at the outer edge by a barrier rim where the film is thin. This shape later evolves into a conventional dimple bounded by the barrier rim, which then drains in the normal way. During the evolution from wimple to dimple, some of the fluid in the thicker part of the film ring flows toward the central region before eventually draining in the opposite direction. Although the drop is pressed toward the wall, the central part of the drop moves away from the wall before approaching it again. This is observed even when the inward push is too small to create a wimple.  相似文献   

7.
We present a microscopic model of the interface between liquid water and a hydrophilic, solid surface, as obtained from ab initio molecular dynamics simulations. In particular, we focused on the (100) surface of cubic SiC, a leading semiconductor candidate for biocompatible devices. Our results show that in the liquid in contact with the clean substrate, molecular dissociation occurs in a manner unexpectedly similar to that observed in the gas phase. After full hydroxylation takes place, the formation of a thin (approximately 3 A) interfacial layer is observed, which has higher density than bulk water and forms stable hydrogen bonds with the substrate. The presence of this thin layer points at rather weak effects on the structural properties of water induced by a one-dimensional confinement between approximately 1.3 nm hydrophilic substrates. In addition, our results show that the liquid does not uniformly wet the surface, but molecules preferably bind along directions parallel to the Si dimer rows.  相似文献   

8.
A theoretical study of the dynamics of electrical double layer formation near a charged solid surface is presented. A microscopic expression for the time dependent inhomogeneous charge density of an ionic solution next to a newly charged surface is derived by using linear response theory and molecular hydrodynamics. The presence of interionic correlations is included through ionic structure factors. The rate of electrical double layer formation is found to depend rather strongly on ion concentration and on the dielectric constant of the medium. It is also found that the formation of double layer becomes slower with increase in distance from the charged surface.  相似文献   

9.
We model the solidification and subsequent cooling of a supercooled liquid droplet that is lying on a cold solid substrate after impact. It is assumed that solidification occurs for a given fixed droplet shape. The shapes used by the model are a sphere, truncated spheres, and an experimentally registered droplet shape. The freezing process is conduction-dominant and is modeled as a one-phase Stefan problem. This moving boundary problem is reformulated with the enthalpy method and then solved numerically with an implicit finite-difference technique. The numerical results for the simple case of a spherical droplet touching a surface are similar to those of a freely freezing spherical droplet and are well confirmed by the 1D asymptotic analytical model of Feuillebois et al. (J. Colloid Interface Sci. 169 (1995) 90). A freezing water droplet is considered as an example. The numerical results for full freezing time, subsequent cooling time, and last freezing point coordinate for the various droplets shapes are fitted by analytical functions depending on supercooling, thermal resistance of the target surface (expressed by Biot number), and spreading parameter. These functions are proposed for direct application, thus avoiding the need to solve the full freezing and cooling problem.  相似文献   

10.
The influences of temperature on xanthan biopolymer assemblies on a two-dimensional surface have been thoroughly studied. High resolution atomic force microscope images show that the xanthan nanofibrils can be used to build up well-dispersed 2D scaffold layer after 1 day annealing at 35 °C. By increasing annealing temperatures (60 °C, 90 °C) of xanthan solutions, the well-dispersed layers can be produced rapidly (6 h, 0.5 h) with micro-sized pore structures. The xanthan scaffold with pore structures potentially allows accommodating micro-sized cells for tissue engineering.  相似文献   

11.
A generalized formalism for the rupture of a nondraining thin film on a solid support due to imposed random thermal and mechanical perturbations, modeled as a Gaussian white noise, is presented. The evolution of amplitude of perturbation is described by a stochastic differential equation. The average film rupture time is the average time for the amplitude of perturbation to equal to the film thickness and is calculated by employing a first passage time analysis for different amplitudes of imposed perturbations, wavenumbers, film thickness, van der Waals and electrostatic interactions and surface tensions. The results indicate the existence of an optimum wavenumber at which the rupture time is minimum. A critical film thickness is identified based on the sign of the disjoining pressure gradient, below which the film is unstable in that the rupture time is very small. The calculated values of rupture time as well as the optimum wavenumber in the present analysis agree well with the results of linear stability analysis for immobile as well as completely mobile gas-liquid film interfaces. For stable films, the rupture time is found to increase dramatically with film thickness near the critical film thickness. As expected, the average rupture time was found to be higher for smaller amplitudes of imposed perturbations, larger surface potentials, larger surface tensions and smaller Hamaker constants.  相似文献   

12.
The adhesion and friction properties of molecularly thin perfluoropolyether (PFPE) lubricant films dip-coated on a diamond-like carbon (DLC) overcoat of magnetic disks were studied using a pin-on-disk-type micro-tribotester that we developed. The load and friction forces were simultaneously measured on a rotating disk surface under an increasing/decreasing load cycle and slow sliding conditions. Experiments were performed using two types of PFPE lubricants: Fomblin Z-tetraol2000S with functional end-groups and Fomblin Z-03 without any end-group. The curves of the friction force as a function of the applied load agree with the curves estimated using the Johnson-Kendall-Roberts (JKR) model. The friction forces on the Z-03 films having different thicknesses were not found to decrease drastically; however, the friction forces on the Z-tetraol film were found to decrease drastically when the film thickness is more than ~1.2 nm. This drastic change in the case of the Z-tetraol film is estimated to be affected by the coverage of the lubricant film.  相似文献   

13.
A new method of silicon surface texturing is reported, which is based on thin silica layer electrochemical reduction in molten salts. A thermal silica layer grown on p-type silicon was potentiostatically reduced in molten calcium chloride at 850 °C. Typical nano–micro-formations obtained at different stages of electrolysis were demonstrated by SEM. X-ray diffraction measurements confirmed conversion of the amorphous thermal silica layer into crystalline silicon. The proposed approach shows promise in photovoltaic applications, for instance, for production of antireflection coatings in silicon solar cells.  相似文献   

14.
The structure of a dipolar fluid in contact with a solid is investigated using the optimized cluster theory. The solid-liquid interaction is described by an effective one-dimensional potential. The model of a perfect impenetrable wall is dropped. An adsorption potential similar to the non-electrostatic potential appearing in the classical models of the double layer is introduced. We show that the effect of a reasonable adsorption potential is localized in the first monolayer in contact with the solid although the total effect of the solid is non localized in this monolayer. No states of orientation predominate in such a way that we can justify a two- or three-state model. The potential drop gs(dip) across the interface and the change in the surface Gibbs energy due to the adsorption potential are calculated. An adsorption potential of magnitude 1kT gives gs(dip) - ?0.6 V. In order to obtain the values of gs(dip) generally accepted in the literature, no dielectric constant or clusters should be introduced. Because of the competition between the dipolar interaction and the adsorption potential, an increase of the dipole moment does not necessarily increase gs(dip).  相似文献   

15.
This work shows a successful example of coupling of theory and experiment to study the tribology of bubble rubbing on solid surface. Such kind of investigation is reported for the first time in the literature. A theory about wetting film intercalated between bubble and moving solid surface was developed, thus deriving the non-linear evolution differential equation which accounted for the friction slip coefficient at the solid surface. The stationary 3D film thickness profile, which appears to be a solution of the differential equation, for each particular speed of motion of the solid surface was derived by means of special procedure and unique interferometric experimental setup. This allowed us to determine the 3D map of the lift pressure within the wetting film, the friction force per unit area and the friction coefficient of rubbing at different speeds of motion of the solid surface. Thus, we observed interesting tribological details about the rubbing of the bubble on the solid surface like for example:  相似文献   

16.
Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.  相似文献   

17.
Analytical validation is a key requirement to asses and to prove a method's reliability and suitability for an intended use. Planar chromatographic procedures are used in different applications ranging from simple screening tests to sophisticated instrumental quantitative assays of analytes in complex matrices. This paper intends to give guidance on how to adopt international accepted formal requirements and guidelines for validation of these different TLC/HPTLC procedures. In addition, some selected parameters for robustness testing and for on going quality assurance of analytical performance based on control charts are reported.  相似文献   

18.
A method for measuring disjoining pressure of a molecularly thin liquid film on a solid surface by using a microfabricated groove has been developed. The shape of the meniscus of a thin film in the microgroove was measured with an atomic force microscope, and the disjoining pressure was obtained from the capillary pressure obtained from the measured curvature of the meniscus. Our method is applicable to a film with a thickness greater than the diameter of gyration in the polymer molecule. Moreover, the method can detect the changes in the disjoining pressure caused by ultraviolet light irradiation, and it is effective in investigating the intermolecular interaction between a thin film and a solid surface.  相似文献   

19.
This study investigated the drop-spreading dynamics of pseudo-plastic and dilatant fluids. Experimental results indicated that the spreading law for both fluids is related to rheological characteristics or power exponent n. For the completely wetting system, the evolution of the wetting radius over time can be expressed by the power law R = atm, where the spreading exponent m of the dilatant fluids is >0.1 and the spreading exponent m of pseudo-plastic fluids is <0.1. The strength of non-Newtonian effects is positively correlated to the extent of deviation from the theoretical value 0.1 of m for Newtonian fluids. For the partially wetting system, the power law on the time dependence of the wetting radius no longer holds; therefore, an exponential power law, R = Req(1-exp(-at(m)/Req)), is proposed, where Req denotes the equilibrium radius of drop and a is a coefficient. Comparing experimental data with the exponential power law revealed that both are in good agreement.  相似文献   

20.
A study has been made of the influence of gravitational forces on the thinning of the liquid film which forms as a solid sphere comes to rest on a liquid/fluid interface. It is found that rates of drainage can be dramatically affected by the ratio of gravity to surface tension forces within the film. At long times a secondary film can possibly be formed which spreads out radially from the apex of the sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号