首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

2.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

3.
Reactions of Cp2ZrCl2 with homometallic complexes of aluminium containing one residual hydroxy group Al(OGO)(OGOH) and Al(L)(OGOH) [where G=G1=CMe2CMe2 (1a); G=G2=CMe2CH2CHMe (1b); G= G3=CMe2CH2CH2CMe2 (1c) and L=L1=OC6H4CH=NCH2CH2O, G=G1 (2a); L=L1, G=G2 (2b); L=L1, G=G3 (2c); L=L2=OC10H6CH=NCH2CH2O, G=G1 (2d); L=L2, G=G2 (2e); L=L2, G=G3 (2f)] in THF using Et3N as HCl acceptor affords novel heterobimetallic compounds of the types Al(OGO)2Zr(Cl)Cp2 and Al(L)(OGO)Zr(Cl)Cp2, respectively. All of these derivatives have been characterised by elemental analyses, molecular weight measurements, and spectroscopic [IR, NMR (1H and 27Al)] studies.  相似文献   

4.
The complexes MLCl2 · nH2O and ML2Cl2 · nH2O, where M = Cu(II), Zn and n = 1–4, were isolated and identified due to the reactions of Cu(II) and Zn(II) chlorides with 2,4,7-trinitrofluorene (L1), 2,4,7-trinitrofluorenone (L1a), and 2,4,5,7-tetranitrofluorene (L2). It was shown that, during complex formation, L1 and L2 were oxidized to fluorenones (L1a, L2a) and as neutral ligands formed 1: 1 and 2: 1 complexes with metal cations. A single crystal of tetranitrofluorenone (L2a) was isolated, and its crystal and molecular structure was determined. The complexes were studied by X-ray powder diffraction analysis, their spectral (IR and UV) characteristics were determined, and the structures for the complexes were proposed.  相似文献   

5.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

6.
Alkynyl gold(I) metallaligands [(AuC≡Cbpyl)2(μ‐diphosphine)] (bpyl=2,2′‐bipyridin‐5‐yl; diphosphine=Ph2P(CH2)nPPh2, [n=3 (LPr), 4 (LBu), 5 (LPent), 6 (LHex)], dppf (LFc), Binap (LBinap) and Diop (LDiop)) react with MX2 (M=Fe, Zn, X=ClO4; M=Co, X=BF4) to give triple helicates [M2(LR)3]X4. These complexes, except those containing the semirigid LBinap metallaligand, present similar hydrodynamic radii (determined by diffusion NMR spectroscopy measurements) and a similar pattern in the aromatic region of their 1H NMR spectra, which suggests that in solution they adopt a compact structure where the long and flexible organometallic strands are folded. The diastereoselectivity of the self‐assembly process was studied by using chiral metallaligands, and the absolute configuration of the iron(II) complexes with LBinap and LDiop was determined by circular dichroism spectroscopy (CD). Thus, (R)‐LBinap or (S)‐LBinap specifically induce the formation of (Δ,Δ)‐[Fe2((R)‐LBinap)3](ClO4)4 or (Λ,Λ)‐[Fe2((S)‐LBinap)3](ClO4)4, respectively, whereas (R,R)‐ or (S,S)‐LDiop give mixtures of the ΔΔ‐ and ΛΛ‐diastereomers. The ΔΔ helicate diastereomer is dominant in the reaction of FeII with (R,R)‐LDiop, whereas the ΛΛ isomer predominates in the analogous reaction with (S,S)‐LDiop. The photophysical properties of the new dinuclear alkynyl complexes and the helicates have been studied. The new metallaligands and the [Zn2(LR)3]4+ helicates present luminescence from [π→π*] excited states mainly located in the C≡Cbpyl units.  相似文献   

7.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

8.
Preparation of the ligands HL1 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-ethylphenol; HL2 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-methoxyphenol and HL3 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-nitrophenol are described together with their Cu(II) complexes with different bridging units. The exogenous bridges incorporated into the complexes are: hydroxo [Cu2L(OH)(H2O)2](ClO4)2.H2O (L1=1a, L2 =1b, L3 =1c), acetato [Cu2L(OAc)2]ClO4.H2O (L1 =2a, L2 =2b, L3 =2c) and nitrito [Cu2L1(NO2)2(H2O)2]ClO4.H2O (L1=3a, L2 =3b, L3 =3c). Complexes1a,1b,1c and2a,2b,2c contain bridging exogenous groups, while3a,3b,3c possess only open μ-phenolate structures. Both the ligands and complexes were characterized by spectral studies. Cyclic voltammetric investigation of these complexes revealed that the reaction process involves two successive quasireversible one-electron steps at different potentials. The first reduction potential is sensitive to electronic effects of the substituents at the aromatic ring of the ligand system, shifting to positive potentials when the substituents are replaced by more electrophilic groups. EPR studies indicate very weak interaction between the two copper atoms. Various covalency parameters have been calculated.  相似文献   

9.
Two new hexadentate N2O4 donor Schiff bases, H4L1 and H4L2, were synthesized by condensation of 4,6-diacetylresorcinol with glycine and alanine, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic, and mass spectra. Reactions of the Schiff bases with copper(II), nickel(II), and iron(III) nitrates in 1 : 2 molar ratio gave binuclear metal complexes and, in the presence of 8-hydroxyquinoline (8-HQ) or 1,10-phenanthroline (Phen) as secondary ligands (L′), mixed-ligand complexes in two molar ratios 1 : 2 : 2 and 1 : 2 : 1 (L1/L2 : M : L′). The complexes were characterized by elemental and thermal analyses, IR, electronic, mass, and ESR spectral studies, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data reveal that the Schiff-base ligands were dibasic or tetrabasic hexadentate ligands. The coordination sites with the metal ions are two azomethine nitrogens, two oxygens of phenolic groups, and two oxygens of carboxylic groups. Copper(II) complexes were octahedral and square planar while nickel(II) and iron(III) complexes were octahedral. The Schiff bases, H4L1 and H4L2, and some of their metal complexes showed antibacterial activity towards Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Pseudomonas fluorescens and Pseudomonas phaseolicola) bacteria and antifungal activity towards the fungi Fusarium oxysporium and Aspergillus fumigatus.  相似文献   

10.
Two new vic-dioxime ligands and their complexes with Co+2, Ni+2, Cu+2, Cd+2, and Zn+2 ions were synthesized. Primer amines (3,4-methylenedioxaaniline and 4-methylbenzylamine) reacted with antichloroglyoxime to give 3,4-methylenedioxaphenylaminoglyoxime (H2L1) and N-(4-methylbenzyl)aminoglyoxime (H2L2) ligands. Structures of the ligands and their complexes are proposed based on elemental analyses, IR, UV-Vis, and 1H NMR spectra, magnetic susceptibility measurements, and thermogravimetric analyses (TGA). The article was submitted by the authors in English.  相似文献   

11.
The complexation of 1-methyl-2-hydroxymethyl-imidazole (L) with Cu(I) and Cu(II) has been studied in aqueous acetonitrile (AN). Cu(I) forms three complexes, Cu(AN)L+, CuL2+, and Cu(AN)H?1L, with stability constants logK(Cu(AN)+ + L ? Cu(AN)L+) = 4.60 ± 0.02, logβ2 = 11.31 ± 0.04, and logK(Cu(AN)H?1L+H+ ? Cu(AN)L+) = 10.43 ± 0.08 in 0.15M AN. The main species for Cu(II) are CuL2+, CuH?1L+, CuH?1L2+, and CuH?2L2. The autoxidation of CuL2+ was followed with an oxygen sensor and spectrophotometrically. Competition between the formation of superoxide in a one-electron reduction of O2 and a path leading to H2O2 via binuclear (CuL2)2O was inferred from the rate law with ka = (2.31 ± 0.12) · 104M ?2S ?1, kb = (1.0 ± 0.2) · 103M ?1, kc = (2.85 ± 0.07) · 102M ?2S ?1, kd = 3.89 ± 0.14M ?1S ?1, ke = 0.112 ± 0.004, kf = (2.06 ± 0.24) · 10?10M S ?1, kg = (1.35 ± 0.07) · 10?7 S ?1, and kh = (6.8 ± 1.4) · 10?7M ?1 S ?1.  相似文献   

12.
A series of triazole‐derived Schiff bases (L1–L5) and their oxovanadium(IV) complexes have been synthesized. The chemical structures of Schiff bases were characterized by their analytical (CHN analysis) and spectral (IR, 1H and 13C NMR and mass spectrometry) data, and oxovanadium(IV) complexes were elucidated by their physical (magnetic susceptibility and conductivity), analytical (CHN analysis), conductance measurements and electronic spectral data. The molar conductivity data indicate the oxovanadium(IV) complexes to be non‐electrolyte. The Schiff bases act as bidentate and coordinate with the oxovanadium(IV)‐forming stoichiometry of a complex as [M (L‐H)2] where M = VO and L = L1–L5 in a square‐pyramidal geometry. The agar well diffusion method was used for in vitro antibacterial screening against E. coli, S. flexenari, P. aeruginosa, S. typhi, S. aureus and B. subtilis and for antifungal activity against T. longifucus, C. albican, A. flavus, M. canis, F. solani and C. glaberata. The biological activity data show the oxovanadium(IV) complexes to be more antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal strains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Small-molecule activation by low-valent main-group element compounds is of general interest. We here report the synthesis and characterization (1H, 13C, 29Si NMR, IR, sc-XRD) of heteroleptic metallasilylenes L1(Cl)MSiL2 (M=Al 1 , Ga 2 , L1=HC[C(Me)NDipp]2, Dipp=2,6-iPr2C6H3; L2=PhC(NtBu)2). Their electronic nature was analyzed by quantum chemical computations, while their promising potential in small-molecule activation was demonstrated in reactions with P4, which occurred with unprecedented [2+1+1] fragmentation of the P4 tetrahedron and formation of L1(Cl)MPSi(L2)PPSi(L2)PM(Cl)L1 (M=Al 3 , Ga 4 ).  相似文献   

14.
Tridentate Schiff bases (H2L1 or H2L2) were derived from condensation of acetylacetone and 2-aminophenol or 2-aminobenzoic acid. Binuclear square pyramidal complexes of the type [M2(L1)2]?·?nH2O (M?=?Fe–Cl, n?=?0; M?=?VO, n?=?1) were accessed from interaction of H2L1 with anhydrous FeCl3 and VOSO4?·?5H2O, respectively. A similar reaction with H2L2, however, produced mononuclear complexes [ML2(H2O) x ]?·?nH2O (M=Fe–Cl, x?=?0, n?=?0; M=VO, x?=?1, n?=?1). The compounds were characterized using elemental analysis, FT-IR, UV-Vis, and NMR (for ligand only), and mass spectroscopies and solution electrical conductivity studies. Magnetic susceptibility measurements suggest antiferromagnetic exchange in binuclear Fe(III) and VO(IV) complexes. Thermo gravimetric analysis (TGA) provided unambiguous evidence for the presence of coordinated as well as lattice water in [VOL2(H2O)]?·?H2O. Cyclic voltammetric studies showed well-defined redox processes corresponding to Fe(III)/Fe(II) and VO(V)/VO(IV). In vitro antimicrobial activities of the compounds were investigated against Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeroginosa, Escherichia coli, Bacillus subtilis, and Proteus vulgaris. H2L1 and its binuclear complexes exhibited pronounced activity against all the microorganisms tested.  相似文献   

15.
Treatment of [Cp*RuCl2]2, 1 , [(COD)IrCl]2, 2 or [(p-cymene)RuCl2]2, 3 (Cp*=η5-C5Me5, COD= 1,5-cyclooctadiene and p-cymene=η6-iPrC6H4Me) with heterocyclic borate ligands [Na[(H3B)L], L1 and L2 ( L1 : L=amt, L2 : L=mp; amt=2-amino-5-mercapto-1,3,4-thiadiazole, mp=2-mercaptopyridine) led to the formation of borate complexes having uncommon coordination. For example, complexes 1 and 2 on reaction with L1 and L2 afforded dihydridoborate species [LAM(μ-H)2BHL] 4 – 6 ( 4 : LA=Cp*, M=Ru, L=amt; 5 : LA=Cp*, M=Ru, L=mp; 6 : LA=COD, M=Ir, L=mp). On the other hand, treatment of 3 with L2 yielded cis- and trans-bis(dihydridoborate) species, [Ru{(μ-H)2BH(mp)}2], cis- 7 and trans- 7 . The isolation and structural characterization of fac- and mer-[Ru{(μ-H)2BH(mp)}{(μ-H)BH(mp)2}], 8 from the same reaction offered an insight into the behaviour of these dihydridoborate species in solution. Fascinatingly, despite having reduced natural charges on Ru centres both at cis-and trans- 7 , they underwent hydroboration reaction with alkynes that yielded both Markovnikov and anti-Markovnikov addition products, 10 a – d .  相似文献   

16.
Complex formation of 2, 6‐bis(2′‐hydroxyphenyl)pyridine (H2Li) with Fe3+ and Cu2+ was investigated in a H2O/DMSO medium (mole fraction xDMSO = 0.2) by potentiometric and spectrophotometric methods. The pKa values of [H3Li]+ are 2.25, 10.51 and 14.0 (25 °C, 0.1 M KCl). The formation constants of [FeIII(Li)]+ and [CuII(Li)] (25 °C, 0.1 M KCl) are log β1 = 21.5 for Fe3+ and log β1 = 18.5 for Cu2+. The crystal structures of [Al(Li)2Na(EtOH)3], [Fe(Li)2Na(EtOH)3], and [Cu(Li)(py)]2 were investigated by single‐crystal X‐ray diffraction analyses. The FeIII and the AlIII compound are isotypic and crystallize in the monoclinic space group P21/n. Al‐compound (215 K): a = 12.599(3) Å, b = 16.653(3) Å, c = 17.525(4) Å, β = 100.27(3)°, Z = 4 for C40H40AlN2NaO7; Fe‐compound (293 K): a = 12.753(3) Å, b = 16.715(3) Å, c = 17.493(3) Å, β = 99.68(3)°, Z = 4 for C40H40FeN2NaO7. Both compounds contain a homoleptic, anionic bis‐complex [M(Li)2] of approximate D2 symmetry. The Cu compound crystallized as an uncharged, dinuclear and centrosymmetric [Cu(Li)(py)]2 complex in the monoclinic space group P21/n with (293 K) a = 13.386(3) Å, b = 9.368(2) Å, c = 14.656(3) Å, β = 100.65(3)°, Z = 2 for C44H32Cu2N4O4. The structural properties and in particular the possible influence of the ligand geometry on the stability of the metal complexes is discussed.  相似文献   

17.
利用硫代二乙酸配体[thiodiacetic acid = H2tda]与稀土盐[SmCl3·nH2O,DyCl3·nH2O]反应合成了两种新型稀土配合物[Ln2(tda)3(H2O)2]n (Ln = Sm(1), Dy(2)),单晶结构分析表明:两个配合物结构相同,均是通过以共边多面体[Ln2O16]为基本单元的一维稀土金属链拓展而成的二维层状结构。有趣的是,在配合物中,硫代二乙酸配体展现了两种配位模式:双“顺-顺桥式双齿、螫合-桥式三齿”模式和双“螯合-桥式三齿、顺-反桥式双齿”模式;正是通过配体这两种配位方式的连接,上述一维稀土金属链扩展为具有(3,4,5,6)连接(47·68)(44·66) (45·6)(46)(43)拓扑结构的二维网络。荧光性质研究表明,在室温下镝配合物呈现黄色荧光,钐配合物呈现鲑鱼粉色荧光。  相似文献   

18.
A novel series of mixed-ligand complexes of 5,5′-{(1E,1E′)-1,4-phenelynebis(diazene-2,1-diyl)}bis(quinolin-8-ol) (H2L1) as a primary ligand and 4-aminoantipyrine(L2) as a secondary ligand with Mn(II) ion were prepared using two general formulae: [Mn2(H2L1)2(L2)2X4].4Cl (X = OH2( 1 ), ONO2( 2 ), Cl=nil; OAc( 3 ), Cl = nil) and [Mn2(H2L1)(L2)2(O2SO2)2]( 4 ). Free ligands and their complexes were characterized. Electronic absorption spectra of the mixed-ligand complexes indicate a distorted octahedral geometry around the central metal ion, and the anions X are in the axial positions for all compounds. The ligands behave in a neutral bidentate manner, through nitrogen atoms and oxygen atoms of the carbonyl group (L2), whereas H2L1 coordinated through nitrogen and OH groups as a neutral bidentate ligand. All complexes do not contain coordinated water molecules, but complex ( 1 ) contains four water molecules. The water molecules are removed in a single step. The complexes exhibited magnetic susceptibility corresponding to five unpaired electrons. The antimicrobial activity of the Mn(II) mixed-ligand complexes ( 1–4 ) against two gram-positive bacteria, three local gram-negative bacteria, and three fungi species was tested. Mn(II) mixed-ligand complex ( 2 ) exhibited significant antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp. Mixed-ligand complex ( 2 ) exhibited a high potential cytotoxicity against the growth of human lung cancer cells.  相似文献   

19.
Summary Copper(II), nickel(II) and cobalt(II) perchlorate complexes of 5,5-dimethylcyclohexane-1,2,3-trione-2-(p-nitrophenyl-hydrazone) (HL1), 5,5-dimethyl-cyclohexane-1,2,3-trione-2-(p-chlorophenylhydrazone) (HL2), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-chlorophenylhydrazone) (HL4), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-methylphenyl-hydrazone) (HL5) and 5,5-dimethylcyclohexane-1,2,3-trione-2-(m-methylphenylhydrazone) (HL6) have been prepared, and characterized using analytical, spectral and magnetic measurements. The data reveal that the reaction of Cu(ClO4)2 (1 mol) in EtOH, with all ligands, produces complexes of the type CuL(ClO4)(H2O).nH2O. Nickel(II) and cobalt(II) perchlorates react only with HL1 and HL2 to produce the complexes ML(ClO4)(H2O)3 (where M = NiII, L = L and L2, M = CoII, L = L1) and Co(HL2)2-(ClO4)2.2H2O. The spectral data show that the ligands behave as monobasic bidentate in their azo forms, except HL2 which reacts with cobalt(II) as a neutral bidentate ligand in its hydrazone form.  相似文献   

20.
《Polyhedron》1995,14(23-24)
New complexes of bivalent nickel with isopropylxanthates and nitrogen-donor ligands of composition [Ni(Prixa)2(L)], [Ni(Prixa)2(L1)2], [Ni(L2)2](Prixa)2, and [Ni(L3)3] (Prixa)2 have been synthesized, where Prixa = i-C3H7OCS2, L = 1,2-diaminopropane (1,2-pn), N,N,N′,N′=tetramethylethylenediamine (tmen) or 4,4′-bipyridine (4,4′-bipy), L1 = pyridine (py), L2 = diethylenetriamine (dien) and L3 = ethylenediamine (en), 1,2-diaminopropane or 1,10-phenanthroline (phen). The compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, magnetochemical measurements, molar conductivity and thermal analysis. The compounds containing the complex cation have been one-electron irreversibly oxidized using cyclic voltammetry. The crystal and molecular structures of [Ni(Prixa)2(tmen)] and [Ni(phen)3](Prixa)2 have been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号