共查询到20条相似文献,搜索用时 15 毫秒
1.
B. V. L''vov L. K. Polzik A. V. Novichikhin A. V. Borodin A. O. Dyakov 《Spectrochimica Acta Part B: Atomic Spectroscopy》1995,50(14):1757-1768
A theoretical analysis is made of the effect of analytical line broadening and of non-absorbable radiation in the light source on the shape of concentration curves in Zeeman graphite furnace atomic absorption spectrometry. These results have been used in a systematic study of the effect of spectrometer slit width and hollow-cathode lamp (HCL) current on linearization of calibration graphs for 11 elements: Ag, Au, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Sb. The effectiveness of linearization throughout the analytical range covered was estimated experimentally on series of 25–30 solutions. Three solutions in each series were used as standards for constructing the calibration graph, the others serving to evaluate the linearization effectiveness. Increasing the slit width and decreasing the HCL current compared to the standard measurement conditions have permitted us to reach a sufficiently high effectiveness of linearization for all the elements studied, with the exception of Ni. The maximum deviation of experimental points from the linear graph under optimum conditions does not exceed 6%. The effect of the Δ parameter used in the computational algorithm on linearization effectiveness is investigated. 相似文献
2.
Julio Cezar Paz de Mattos Luiz Frederico Rodrigues Érico Marlon de Moraes Flores Viliam Krivan 《Spectrochimica Acta Part B: Atomic Spectroscopy》2011,66(8):637-643
The trace impurities Cr, Cu, Fe, K, Mn, Sb and Zn were determined in powdered aluminum nitride by direct solid sampling graphite furnace atomic absorption spectrometry using a ZEEnit 60 atomic absorption spectrometer. This spectrometer features inverse Zeeman-effect background correction and a variable magnetic field enabling measurements in two sensitivity modes over a concentration range of three orders of magnitude. The measurement sensitivity can be adjusted to the analyte concentration in the sample. The use of chemical modifiers was not necessary. Calibration was carried out by means of calibration curves obtained with aqueous standard solutions. Accuracy was checked mainly by comparison of the results with those obtained by instrumental and radiochemical neutron activation analysis whereby, excluding the results for potassium, no significant differences were found by carrying out the t-test at the significance level 0.05. The limits of detection were between 0.05 ng g−1 (Zn) and 80 ng g−1 (Fe) and the relative standard deviations below 11 %. With the proposed method, up to ten measurement cycles can be carried out in one hour. 相似文献
3.
Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry 总被引:2,自引:0,他引:2
da Silva AF Borges DL Lepri FG Welz B Curtius AJ Heitmann U 《Analytical and bioanalytical chemistry》2005,382(8):1835-1841
This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 g) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 °C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 °C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 °C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 °C and atomization at 1500 °C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g–1, calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6–1.2 mg were analyzed.Dedicated to the memory of Wilhelm Fresenius 相似文献
4.
Alessandra Furtado da Silva Bernhard Welz Adilson J. Curtius 《Spectrochimica Acta Part B: Atomic Spectroscopy》2002,57(12):2031-2045
Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l−1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55–60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg−1 were satisfactory for a routine procedure. 相似文献
5.
Éder Lisandro de Moraes Flores Juliano Smanioto Barin Érico Marlon de Moraes Flores Valderi Luiz Dressler 《Spectrochimica Acta Part B: Atomic Spectroscopy》2007
This work deals with the determination of fluorine by solid sampling graphite furnace molecular absorption spectrometry. The molecular absorbance of aluminum monofluoride (AlF), which is produced in the vapor phase in the presence of Al3+, is measured at 227.5 nm, a non-resonant platinum line. A conventional graphite furnace program has been used with pyrolysis and vaporization temperatures of 800 and 2300 °C, respectively. Solutions of Ba2+ and Al3+ have been used to avoid fluorine losses during the pyrolysis stage and to produce AlF in the vaporization stage, respectively. Certified coal and alumina samples were analyzed using aqueous standards for calibration. The agreement between the found concentration and the certified value, or the value obtained by another method ranged from 92 to 105%, with a relative standard deviation less than 8.5%. The limit of detection and the characteristic mass was 0.17 μg g− 1 and 205 pg, respectively. 相似文献
6.
Alvaro T. Duarte Morgana B. Dessuy Marcia M. Silva Maria Goreti R. Vale Bernhard Welz 《Microchemical Journal》2010,96(1):102-107
The European initiatives to minimize waste electric and electronic equipment (WEEE) and the restriction of hazardous substances (RoHS) had a major impact on the routine control of hazardous substances, including toxic trace metals, such as cadmium and lead, in all kinds of materials that are used in electric and electronic equipment. Instead of analyzing a whole computer, cell phone or television set, individual parts are normally investigated in order to simplify the analytical task. Plastic components are important constituents of electronic equipment, and a potential source of toxic trace metals that are added as catalysts, stabilizers or colorants. As high-tech plastic materials are designed to be resistant against chemical attack, they are usually difficult to bring into solution. A procedure is proposed in the present work that uses direct solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards. The method is sensitive, fast, and it does not require any sample preparation. The limits of detection of 0.1 mg kg− 1 for Cd and 0.6 mg kg− 1 for Pb are more than adequate for the purpose. Additional means are presented for reducing the sensitivity in order to cope with high analyte concentration. The method has been tested analyzing two certified reference materials, and good agreement with certified values has been obtained. 相似文献
7.
Manganese in vitamin-minerals tablets was determined by solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS) using three different calibration methods, namely calibration against aqueous standards, standard addition with aqueous standards on solid samples and calibration against solid certified standards. Samples were only finely ground and introduced directly into the furnace by means of solid autosampler system without any dissolving process. Effects of different calibration techniques, temperatures and heating rates of atomization and pyrolysis steps on the accuracy and precision of the analyte elements were investigated. After optimization of the experimental parameters, there is good agreement (at 95% confidence level) between the results obtained by solid sampling and those obtained by acid digestion of samples. 相似文献
8.
Isabel C.F. Damin Morgana B. Dessuy Tamara S. Castilhos Márcia M. Silva Maria Goreti R. Vale Bernhard Welz Dmitri A. Katskov 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009
The determination of trace elements in crude oil is difficult due to the complex nature of the sample and the various different chemical forms in which the metals can occur. The advantage of graphite furnace atomic absorption spectrometry is that only a minimum of sample pretreatment is required. In this work two techniques have been compared to establish a fast and reliable method for lead determination in crude oil. In the first one the crude oil samples were weighed directly onto solid sampling (SS) platforms and introduced into the graphite tube for analysis. In the second one the samples were prepared as oil-in-water emulsions and analyzed in a filter furnace (FF). Twenty μL of a mixture of 0.5 mg L− 1 Pd + 0.3 mg L− 1 Mg + Triton X-100 has been used as the modifier, and calibration against aqueous solutions has been used for both methods. The sensitivity obtained with the FF was more than a factor of two better than that with SS; however, as a larger sample mass could be introduced in the latter case, so that the limits of detection for both techniques were 0.004 mg kg− 1. Seven crude oil samples were analyzed using the two procedures, and all results were in agreement at a 95% confidence level using a paired Student's t-test. For validation purposes, three crude oil samples have been mineralized using an open-vessel acid digestion, and the results were in agreement with those found with direct sampling and with emulsion sampling using FF according to ANOVA test. Both methods are simple, fast and reliable, being appropriated for routine analysis; however, the direct method using SS technology should be preferred because of its simplicity, speed and commercial availability. 相似文献
9.
Two digestion-free methods for trace analysis of boron nitride based on graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma spectrometry optical emission (ETV-ICP-OES) using direct solid sampling have been developed and applied to the determination of Al, Ca, Cr, Cu, Fe, Mg, Mn, Si, Ti and Zr in four boron nitride materials in concentration intervals of 1–23, 54–735, 0.05–21, 0.005–1.3, 1.6–112, 4.5–20, 0.03–1.8, 6–46, 38–170 and 0.4–2.3 μg g− 1, respectively. At optimized experimental conditions, with both methods, effective in-situ analyte/matrix separation was achieved and calibration could be performed using calibration curves measured with aqueous standard solutions. In solid sampling GFAAS, before sampling, the platform was covered with graphite powder and, for determination of Si, also the Pd/Mg(NO3)2 modifier was used. In the determination of all analyte elements by solid sampling ETV-ICP-OES, Freon R12 was added to argon carrier gas. For solid sampling GFAAS and ETV-ICP-OES, the achievable limits of detection were within 5 (Cu)–130 (Si) ng g− 1 and 8 (Cu)–200 (Si) ng g− 1, respectively. The results obtained by these two methods for four boron nitride materials of different purity grades are compared each with the other and with those obtained in analysis of digests by ICP-OES. The performance of the two solid sampling methods is compared and discussed. 相似文献
10.
A procedure for chromium (Cr) determination in pharmaceutical grade barium sulfate by direct solid sampling electrothermal atomic absorption spectrometry (DSS-ET AAS) with Zeeman-effect background correction was developed. Operational conditions for the proposed procedure and the use of citric acid, ammonium phosphate, palladium and magnesium nitrate as chemical modifiers were evaluated. Pyrolysis and atomization temperatures were set at 1500 and 2400 °C, respectively and the use of matrix modifiers did not improve these conditions. Graphite platform presented high degradation rate, but minima changes were observed in the sensitivity or signal profile. Samples (0.3-1 mg) were weighted and introduced into the furnace using a manual solid sampling system. The linear concentration range of the calibration curve was from 100 to 1800 pg (R2 > 0.995). The characteristic mass was 7.7 pg and the limit of detection was 2.4 pg. Chromium concentration in commercial samples ranged from 0.45 to 1.06 μg g−1 and these results were confirmed by standard addition method. The mean reproducibility was 12% (n = 20 in a 3-day period) and repeatability was less than 9%. Results obtained using inductively coupled plasma optical emission spectrometry and conventional electrothermal atomic absorption spectrometry after extraction with HNO3 were around 20% lower than those obtained by the proposed procedure. It was assumed that the low results were due to incomplete extraction even using hard conditions related to temperature and pressure. The proposed procedure by DSS-ET AAS provided some advantages related to recommended pharmacopoeias methodology, as lower risks of contamination and analyte losses, higher specificity, accuracy and sensitivity, no toxic or unstable reagents are required, and calibration with aqueous standards was feasible. 相似文献
11.
A solid sampling electrothermal atomic absorption spectrometry method for direct determination of trace silicon in biological materials was developed and applied to analysis of pork liver, bovine liver SRM 1577b and pure cellulose. The organic matrix was destroyed and expelled from the furnace in the pyrolysis stage involving a step-wise increasing the temperature from 160 °C to 1200 °C. The mixed Pd/Mg(NO3)2 modifier has proved to be the optimum one with respect to the achievement of maximum sensitivity, elimination of the effect of the remaining inorganic substances and the possibility of using calibration curves measured with aqueous standard solutions for quantification. For the maximum applicable sample amount of 6 mg, the limit of detection was found to be 30 ng g− 1. The results were compared with those obtained by different spectrometric methods involving sample digestion, by electrothermal atomic absorption spectrometry using slurry sampling, by wavelength dispersive X-ray fluorescence spectrometry and by radiochemical neutron activation analysis. The method seems to be a promising one for analysis of biological materials containing no significant fraction of silicon in form of not naturally occurring volatile organosilicon compounds. The still incessant serious limitations and uncertainties in the determination of trace silicon in solid biological materials are discussed. 相似文献
12.
13.
Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 µg L− 1 (compared to 2.1 µg L− 1 for a previously reported system in the absence of trapping) with a precision of 11% for a 10 µg L− 1 mercury standard (RSD, N = 5). 相似文献
14.
Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues 总被引:1,自引:0,他引:1
In this work, the potential of graphite furnace atomic absorption spectrometry for the direct determination of B in plant tissues has been investigated. Three certified reference materials (NIST SRM 1570a spinach leaves, NIST SRM 1573a tomato leaves and BCR CRM 679 white cabbage) were selected for this study, the goal always being to develop a fast procedure that could be robust enough to provide a satisfactory performance for all of them, without any modifications in the conditions applied.The use of a suitable chemical modifier was found to be essential for obtaining a reproducible and sufficiently sensitive signal for boron solutions. In this regard, the performance of the combination of citric acid plus W (added as a permanent modifier) was noteworthy, resulting in well-defined signal profiles, a remarkable analyte stabilization during the pyrolysis step (up to 2100 °C) and minimal memory effects. This mixture of modifiers provided a good performance for the direct analysis of solid samples as well, but only if a suitable temperature program, favoring the interaction between the analyte and the modifiers, was used. Thus, such a temperature program, with two pyrolysis steps and the addition of NH4NO3 in order to carry out the in situ sample microdigestion, was optimized. Under these conditions, the peak areas obtained for both solid samples and aqueous standards were comparable.Finally, the analysis of the samples was carried out. In all cases, a good agreement with the certified values was obtained, while R.S.D. values ranged between 6 and 10%. It can be concluded that the method proposed shows significant advantages for the determination of this complicated element in solid samples such as the use of aqueous standards for calibration, a high sample throughput (20 min per sample), a suitable limit of detection (0.3 μg g−1) and reduced risk of analyte losses and contamination. 相似文献
15.
This work explores the potential of solid sampling-graphite furnace atomic absorption spectrometry (SS-GFAAS) for the fast and direct determination of Hg in polymers. Eight certified reference materials with different composition (polyethylene-PE-, polystyrene-PS-, poly vinyl chloride-PVC- and acrylonitrile butadiene styrene-ABS-) were selected for the study, covering a wide Hg content range (from 20 to 1100 μg g− 1). 相似文献
16.
A new method based on ultrasonic slurry sampling atomic absorption spectrometry (AAS) was established for the determination
of trace mercury in geological samples by use of recently developed mercury cold vapor generation using formic acid under
ultraviolet (UV) irradiation. The generated mercury cold vapor was rapidly separated from the matrix and swept into a T-tube
for the measurement of atomic absorbance. Under the optimal experimental conditions, up to 1000-fold of Cu(II), Co(II), Ni(II),
Cr(VI), Mn(II), Fe(III), and Zn(II) caused no significant interference with the determination of 50 μg L−1 Hg. The limit of detection at sub-ppb level was obtained for mercury. The method was applied to the determination of mercury
in geological samples with satisfactory results.
Correspondence: Xiandeng Hou, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China 相似文献
17.
Luiz Frederico Rodrigues Julio Cezar Paz de Mattos Valderi Luiz Dressler Dirce Pozebon Érico Marlon de Moraes Flores 《Spectrochimica Acta Part B: Atomic Spectroscopy》2007
Trace impurities of Cd, Cu and Pb were determined in alumina based catalysts using direct solid sampling graphite furnace atomic absorption spectrometry (DSS-GF AAS). The analyzed catalysts are widely used in petrochemical processes. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solutions, the necessity for palladium as chemical modifier and the sample mass introduced into the atomizer. Test samples between 0.05 and 8.5 mg were used. Palladium was investigated as chemical modifier but no improvement in analytical performance was obtained and its use was considered unnecessary for all elements. The results obtained by DSS-GF AAS were compared with those of inductively coupled plasma optical emission spectrometry (ICP OES) and also with conventional solution analysis by GF AAS (Sol-GF AAS). Characteristic masses were 1.4, 9 and 20 pg, for Cd, Cu and Pb, respectively. Using DSS-GF AAS the relative standard deviation was always less than 10% and the results agreed with those obtained by Sol-GF AAS and ICP OES. Calibration using aqueous solutions showed good linearity within the working range (R2 better than 0.99). Limits of detection (3σ, n = 10) for Cd, Cu and Pb using the proposed procedure were 0.2, 22, and 1.2 ng g− 1, respectively. 相似文献
18.
In this work, the possibilities of solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of silver in solid samples of very different nature (a biological sample, a soil, an ore concentrate and a polymer) and showing substantial differences in their analyte content (from approximately, 40 ng g−1 up to 350 μg g−1) have been evaluated, the goal always being to develop fast methods, only relying on the use of aqueous standards for calibration.Different factors had to be taken into account in order to develop suitable procedures for all the samples under investigation. Among the most important ones, the following can be mentioned: (i) optimization of the temperature program in order to selectively atomize the analyte; (ii) the use of chemical modifiers (such as Pd or HNO3), depending on the sample characteristics; (iii) appropriate wavelength, argon flow and sample mass selection (depending on the analyte content); (iv) the use of 3-field mode Zeeman-effect background correction in order to further expand the linear range up to 1000 ng of Ag, which was needed for analysis of the sample showing the highest Ag content (polypropylene).The procedures finally proposed show interesting features for the determination of silver in solid samples: the advantage of using aqueous standard solutions for calibration, a high sample throughput (approximately, 15 min per sample), a low detection limit (2 ng g−1), sufficient precision (R.S.D. values in the vicinity of 10%) and a reduced risk of analyte losses and contamination. 相似文献
19.
The development of two-stage control systems is of great interest when a large number of samples are analysed in order to check that they fulfil certain requirements. If the first stage is carried out using an inexpensive method with a high throughput which makes it possible to filter out the majority of the samples that fulfil the requirements, the procedure is not only less time-consuming but also more economical. Direct determination of metals in solid samples by graphite furnace atomic absorption spectrometry (GFAAS) appears, in principle, to be a suitable analytical technique for screening purposes since it provides sufficiently reliable results in a reasonably short time. In this paper it is applied with satisfactory results to antimony content control in a PVC sample. 相似文献
20.
A method for the direct determination of volatile and non-volatile nickel and vanadium compounds in crude oil without previous treatment using direct solid sampling graphite furnace atomic absorption spectrometry is proposed. The crude oil samples were weighed directly onto solid sampling platforms using a microbalance and introduced into a transversely heated solid sampling graphite tube. In previous work of our group losses of volatile nickel and vanadium compounds have been detected, whereas other nickel and vanadium compounds were thermally stable up to 1300 and 1600 °C, respectively. In order to avoid this problem different chemical modifiers (conventional and permanent) have been investigated. With 400 μg of iridium as permanent modifier, the signal started to drop already after two atomization cycles, possibly because of an interaction of nickel (which is a catalyst poison) with iridium. Twenty micrograms of palladium applied in each determination was found to be optimum for both elements. The palladium was deposited on the platform and submitted to a drying step at 150 °C for 75 s. After that the sample was added onto the platform and submitted to the furnace program. The influence of sample mass on the linearity of the response and on potential measurement errors was also investigated using four samples with different nickel content. For the sample with the lowest nickel concentration the relationship between mass and integrated absorbance was found to be non-linear when a high sample mass was introduced. It was suspected that the modifier had not covered the entire platform surface, which resulted in analyte losses. This problem could be avoided by using 40 μL of 0.5 g L−1 Pd with 0.05% Triton X-100. Calibration curves were established with and without modifier, with aqueous standards, oil-in-water emulsions and the certified reference material NIST SRM 1634c (trace metals in residual fuel oil). The sensitivity for aqueous standards and emulsions was close to that for SRM 1634c, making possible the use of aqueous standards for calibration. The limits of detection and quantification obtained for nickel and vanadium under this condition were found to be 0.02 and 0.06 μg g−1, respectively, for both elements, based on 10 mg of sample. Nickel and vanadium were determined in the samples with (total Ni and V) and without the use of Pd (thermally stable compounds), and the concentration of volatile compounds was calculated by difference. The results were compared with those obtained by high-resolution continuum source graphite furnace atomic absorption spectrometry by emulsion technique; no significant differences were found for total Ni and V at the 95% confidence level according to a Student's t-test. 相似文献