首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion Mobility Spectrometry is a powerful tool for the study of molecular conformations, separation of mass isomers, and analysis of complex mixtures and suppression of chemical background. The factors that limit the capabilities of the technique include its relatively low resolving power and duty cycle. New principle of gas-phase ion separation, based on ion focusing under the influence of electrostatic field and stationary in time gas flow, is proposed. Both analytical calculations and a numerical simulation show that a diffusion-limited resolution of several hundred can be achieved. The new type of ion mobility analyzer is called orthogonal extraction IMS. The proposed ortho-IMS can be interfaced with commercial mass spectrometers and offers the theoretical resolution of several hundred and ion transmission close to 100%.  相似文献   

2.
3.
This review presents a list of reduced ion mobilities that have been measured under ambient pressure conditions and reported in the open literature during the 16-year period of 1970-1985. Ions reported are listed in order of increasing reduced mobility along with the name of the parent compound, the reduced mobility of additional product ions observed in the spectrum, the carrier and drift gases, the temperature of the drift region and the reference where the data were reported. Also, ions that have been identified by mass spectrometry are indicated with an asterisk.  相似文献   

4.
This paper reports the first investigation of electron capture ion mobility spectrometry as a detection method for capillary gas chromatography. In previous work with negative ion mobility detection after gas chromatography, the principal reactant ion species were O2? or hydrated O2? due to the presence of oxygen in the drift gas. These molecular reactant ions have a mobility similar to chloride and bromide ions, which are the principal product ions formed by most halogenated organics via dissociative ion-molecule reactions. Oxygenated reactant ions thus interfere with the selective detection of chloride and bromide product ions. A recently described ion mobility detector design efficiently eliminated ambient impurities, including oxygen, from infiltrating the ionization region of the detector; consequently, in the negative mode of operation, the ionization species with N2 drift gas were thermalized electrons. Thermalized electrons have a high mobility and their drift time occupies a region of the ion mobility spectrum not occupied by chloride, bromide, or other product ions. The result was improved selectivity for halogenated organics which ionize by dissociative electron capture. This was demonstrated by the selective detection of 4,4′-dibromobiphenyl from the components of a polychlorinated biphenyl mixture (Aroclor 1248).  相似文献   

5.
Mass spectrometry (MS) has dramatically evolved in the last two decades and has been the driving force of the spectacular expansion of proteomics during this period. However, the very poor compatibility of MS with detergents is still a technical obstacle in some studies, in particular on membrane proteins. Indeed, the high hydrophobicity of membrane proteins necessitates the use of detergents for their extraction and solubilization. Here, we address the analytical potential of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for separating peptides from detergents. The study was focused on peptides from the human integral membrane protein CD9. A tryptic peptide was mixed with the non-ionic detergents Triton X-100 or beta-D-dodecyl maltoside (DDM) as well as with the ionic detergents sodium dodecyl sulfate (SDS) or sodium deoxycholate (SDC). Although electrospray ionization (ESI) alone led to a total suppression of the peptide ion signal on mass spectra with only detection of the detergents, use of FAIMS allowed separation and clear identification of the peptide with any of the detergents studied. The detection and identification of the target compound in the presence of an excess of detergents are then feasible. FAIMS should prove especially useful in the structural and proteomic analysis of membrane proteins.  相似文献   

6.
Emissions from surfaces (from furniture, wall paintings or floor coverings for instance) significantly influence indoor air quality and therefore the wellbeing or even the health of the occupants. Together with metabolites from mold they are responsible for the well-known “sick building syndrome”. Therefore, it is in the interest of the manufacturer as well as of the occupants to have a fast and accurate method for the detection of substances relevant to this syndrome in order to be able to monitor and control product quality and indoor air quality. The use of small and easy-to-transport ion mobility spectrometers that use UV light as the ionization source enables rapid in situ detection of such substances with high selectivity and sensitivity (detection limits in the lower ppb range). If a multicapillary column is used for preseparation as well, the selectivity is increased and the unwanted influence of humidity on the spectra can be eliminated, thus enabling the use of the instruments under normal ambient conditions. Furthermore, the use of air as carrier gas avoids the need for other sources of high-purity gas. An emission cell with a homogeneous and constant air flow over the surface to be investigated was developed in order to ensure reproducible results. Investigations of emissions from wooden surfaces with and without additional contamination as well as from complex mixtures are presented. The results demonstrate that relevant emissions can be identified and quantified with high sensitivity and selectivity in under five minutes. Therefore, the method is useful for indoor air quality monitoring, especially when miniaturized instruments are applied. Figure  相似文献   

7.
Tam M  Hill HH 《The Analyst》2011,136(15):3098-3106
A novel analytical method, called Liquid Phase Ion Mobility Spectrometry (LiPIMS) was demonstrated, where aqueous phase analytes were ionized and introduced into non-aqueous liquids, transported by an external electric field from the point of generation to a collection electrode. Ions were produced from a unique liquid phase ionization process, called Electrodispersion Ionization. Spectra of analyte ions illustrated the potential of LiPIMS as a new separation technique. Experimental data showed that electrodispersion ionization was effective in generating nanoampere level of ion current in hexane and benzene from aqueous samples. By controlling the ionization voltage in relation to the sample flow rate, it was possible to operate the electrodispersion ionization source in both continuous and pulsed ionization modes. Unique LiPIMS spectra of aqueous samples of tetramethylammonium bromide, tetrabutylammonium bromide and bradykinin were presented and their respected liquid phase ion mobility values were determined.  相似文献   

8.
The major reactant ion in conventional ion mobility spectrometry (IMS) is the hydronium ion, H3O+ which is produced in the usual ionization sources such as corona discharge or radioactive sources. Using the hydronium reactant ion, mostly the analytes with proton affinity higher than that of water are ionized. A broader range of compounds can be detected by IMS if other alternative ionization channels, such as charge transfer from NO+, are employed. In this work we introduce a simple and novel method for producing NO+ as the major reactant ion in IMS. This was achieved by adding neutral NO to the corona discharge ionization source. The neutral NO was prepared via an additional discharge in an air stream, flowing into the corona discharge source. A curtain plate was mounted in front of the corona discharge to prevent the influence of the analyte on the production of NO+. Using this technique, the reactant ion could easily and quickly switch between the H3O+ and NO+. The performance of the new source was evaluated by recording ion mobility spectra of test compounds with both H3O+ and NO+ reactant ions.  相似文献   

9.
Two new approaches to reduce false positive interferences commonly observed with explosives and drugs detection in the field were reported for ion mobility spectrometry (IMS). One of the approaches involved the rapid preseparation of potential interferences prior to detection by IMS. Firstly, it was found that the introduction of a short column packed with adsorption packing material before an IMS could help to reduce the false positive rates. Secondly, the retention time at which the most intense response occurred over the analysis time period could be utilized to separate false positive responses from target analytes with the same drift times. Rapid preseparation of potential interferences provided a greater degree of confidence for the detection (in less than 30 s) of drugs, explosives and chemical warfare agents (CWAs). Detection limits as low as 10 pg of TNT with a sensitivity of 12 A g−1 were reported. Successful development of this technique may lead to the construction of a simple interface fitted with a short column of adsorption packing material to enhance either initial separation or to hold-back interferences mixed with explosive and drug responses in the field.  相似文献   

10.
Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/? 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.  相似文献   

11.
Methyl tertiary-butyl ether (MTBE) is an organic compound which is used as a gasoline additive. Contamination of ground and surface water can occur due to large scale use of MTBE and its high solubility in water. According to United State Environmental Protection Agency (USEPA), MTBE is a possible human carcinogen at high doses and its detection and measurement in the water is important as concerned about human health. In this work, ion mobility spectrometry (IMS) equipped with a corona discharge ionization source was used for determination of MTBE in drinking water. Both pure and aqueous solutions of MTBE were studied and their ion mobility spectra were obtained at different temperatures. Using a calibration curve for detection of MTBE in drinking water, a detection limit (LOD) of 1 mg/L was obtained by IMS. This work proved that, IMS with corona discharge can be used for fast and direct detection of MTBE in water sample without any sample preparation.  相似文献   

12.
13.
Using a simple ion source set-up, laser desorption/ionization on silicon (DIOS) was demonstrated with the use of a custom-made drift tube ion mobility spectrometer (IMS), mounted on a commercial triple quadrupole mass spectrometer, and with an IMS equipped with a Faraday plate detector. DIOS was tested by mobility measurement of tetrapropylammonium iodide, tetrabutylammonium iodide and tetrapentylammonium iodide, whilst 2,6-di-tert- butylpyridine was used as a standard. The reduced mobilities measured for the test halides are in concordance with previously obtained ion mobility spectrometry-mass spectrometry data.  相似文献   

14.
Methyl tert-butyl ether (MTBE) is commonly used as chemical additive to increase oxygen content and octane rating of reformulated gasoline. Despite its impact on enhancing cleaner combustion of gasoline, MTBE poses a threat to surface and ground water when gasoline is released into the environment. Methods for onsite analysis of MTBE in water samples are also needed. A less common technique for MTBE detection from water is ion mobility spectrometry (IMS). We describe a method for fast sampling and screening of MTBE from water by solid phase microextraction (SPME) and IMS. MTBE is adsorbed from the head space of a sample to the coating of SPME fiber. The interface containing a heated sample chamber, which couples SPME and IMS, was constructed and the SPME fiber was introduced into the sample chamber for thermal desorption and IMS detection of MTBE vapors. The demonstrated SPME-IMS method proved to be a straightforward method for the detection of trace quantities of MTBE from waters including surface and ground water. We determined the relative standard deviation of 8.3% and detection limit of 5 mg L−1 for MTBE. Because of short sampling, desorption, and detection times, the described configuration of combined SPME and IMS is a feasible method for the detection of hazardous substances from environmental matrices.  相似文献   

15.
Process analysis using ion mobility spectrometry   总被引:7,自引:0,他引:7  
Ion mobility spectrometry, originally used to detect chemical warfare agents, explosives and illegal drugs, is now frequently applied in the field of process analytics. The method combines both high sensitivity (detection limits down to the ng to pg per liter and ppbv/pptv ranges) and relatively low technical expenditure with a high-speed data acquisition. In this paper, the working principles of IMS are summarized with respect to the advantages and disadvantages of the technique. Different ionization techniques, sample introduction methods and preseparation methods are considered. Proven applications of different types of ion mobility spectrometer (IMS) used at ISAS will be discussed in detail: monitoring of gas insulated substations, contamination in water, odoration of natural gas, human breath composition and metabolites of bacteria. The example applications discussed relate to purity (gas insulated substations), ecology (contamination of water resources), plants and person safety (odoration of natural gas), food quality control (molds and bacteria) and human health (breath analysis).  相似文献   

16.
Chemical standards in ion mobility spectrometry   总被引:1,自引:0,他引:1  
Positive ion mobility spectra for three compounds (2,4-dimethylpyridine (2,4-DMP, commonly called 2,4-lutidine), dimethyl methylphosphonate (DMMP) and 2,6-di-t-butyl pyridine (2,6-DtBP)) have been studied in air at ambient pressure over the temperature range 37-250 °C with (H2O)nH+ as the reactant ion. All three compounds yield a protonated molecule but only 2,4-dimethylpyridine and dimethyl methylphosphonate produced proton-bound dimers. The reduced mobilities (K0) of protonated molecules for 2,4-dimethylpyridine and DMMP increase significantly with increasing temperature over the whole temperature range indicating changes in ion composition or interactions; however, K0 for the protonated molecule of 2,6-di-t-butyl pyridine was almost invariant with temperature. The K0 values for the proton-bound dimers of 2,4-dimethylpyridine and DMMP also showed little dependence on temperature, but could be obtained only over an experimentally smaller and lower temperature range and at elevated concentrations. Chemical standards will be helpful as mobility spectra from laboratories worldwide are compared with increased precision and 2,6-di-t-butyl pyridine may be a suitable compound for use in standardizing reduced mobilities. The effect of thermal expansion of the drift tube length on the calculation of reduced mobilities is emphasized.  相似文献   

17.
18.
Ion mobility spectrometry is an effective method for detecting mine-explosive devices and explosive charges and for revealing objects and peoples who came into contact with explosives. This is because of the excellent analytical and performance characteristics of the corresponding instruments. In the present work, we described the objects to be detected, formulated the basic terms and definitions, considered the physicochemical basics of the separation of ions by their mobility in a gas under an electric field, and presented experimental data on the main analytical characteristics of spectrometers: their ability to identify analytes, resolution power, time to provide readings, sensitivity, and detection limit.  相似文献   

19.
A new sample introduction system based on spray nebulization has been successfully developed to perform direct analysis of liquid samples by IMS. The system comprises a concentric nebulizer that generates a spray plume which is introduced in the ionization region of the IMS instrument through a temperature controlled transfer line. This system avoids previous problems of direct injection of liquid samples and maintains the countercurrent flow of inert gas necessary for the operation of the IMS instrument. Evaluation of the qualitative and quantitative capabilities of the methodology has been performed after a carefully study of the main variables affecting the spray nebulization and the transport of the analyte molecules through the transfer line. To demonstrate the usefulness of the new sample introduction system, direct analysis of drugs and drug metabolites in saliva or urine samples have been performed, obtaining accurate, reliable and sensitive results. Moreover, analytes with physico-chemical properties that limited the capability of thermal desorption as sample introduction method such as amino acids can be analyzed by using the spray nebulization methodology.  相似文献   

20.
Detection of perfluorocarbons using ion mobility spectrometry   总被引:1,自引:0,他引:1  
An ISAS custom-designed ion mobility spectrometer equipped with a ionization source is used for the sensitive detection of traces of perfluorocarbons (PFCs, C5F12 to C9F20) in air, a class of substances for which a growing interest for industrial and environmental applications arose within the last years. Mobility spectra of the PFCs are presented, compared and discussed with regard to the possibility of identifying these analytes; detection limits are determined to be in the upper ng l−1 range. Using a specific PFC as an example, a way to prevent unwanted contributions of non-product ions, the difference mobility spectrum, is introduced and described. Advantages and possibilities of this technique are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号