首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Dengue virus (DENV) has emerged as a rapidly spreading epidemic throughout the tropical and subtropical regions around the globe. No suitable drug has been designed yet to fight against DENV, therefore, the need for safe and effective antiviral drug has become imperative. The envelope protein of DENV is responsible for mediating the fusion process between viral and host membranes. This work reports an in silico approach to target B and T cell epitopes for dengue envelope protein inhibition. A conserved region “QHGTI” in B and T cell epitopes of dengue envelope glycoprotein was confirmed to be valid for targeting by visualizing its interactions with the host cell membrane TIM-1 protein which acts as a receptor for serotype 2 and 3. A reverse pharmacophore mapping approach was used to generate a seven featured pharmacophore model on the basis of predicted epitope. This pharmacophore model as a 3D query was used to virtually screen a chemical compounds dataset “Chembridge”. A total of 1010 compounds mapped on the developed pharmacophore model. These retrieved hits were subjected to filtering via Lipinski’s rule of five, as a result 442 molecules were shortlisted for further assessment using molecular docking. Finally, 14 hits of different structural properties having interactions with the active site residues of dengue envelope glycoprotein were selected as lead candidates. These structurally diverse lead candidates have strong likelihood to act as further starting structures in the development of novel and potential drugs for the treatment of dengue fever.  相似文献   

2.
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO(2) wafers was achieved under pH 11.6, 50mM CaCl(2), and at 70 degrees C. XG-ALG films presented mean thickness of (16+/-2)nm and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAlt adsorbed irreversibly onto XG-ALG forming homogenous monolayers approximately (4+/-1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue.  相似文献   

3.
A sensitive membrane-based electrochemical nanobiosensor is developed for the detection of dengue type 2 virus (DENV-2) using nanoporous alumina-modified platinum electrode. Its sensing mechanism relies on the monitoring of electrode's Faradaic current response toward redox probe, ferrocenemethanol, which is sensitive toward the formation of immune complexes within the alumina nanochannels. Anti-DENV-2 monoclonal antibody (clone 3H5, isotype IgG) is used as the biorecognition element in this work. The stepwise additions of antibody, bovine serum albumin (BSA) and DENV-2 are characterized by differential pulse voltammetry (DPV). A low detection limit of 1 pfu mL−1 with linear range from 1 to 103 pfu mL−1 (R2 = 0.98) can be achieved by the nanobiosensor. The nanobiosensor is selective toward DENV-2 with insignificant cross reaction with non-specific viruses, Chikungunya virus, West Nile virus and dengue type 3 virus (DENV-3). Relative standard deviation (RSD) for triplicate analysis of 5.9% indicates an acceptable level of reproducibility. The first direct quantitation of DENV-2 concentration in whole mosquito vector is demonstrated using this electrochemical nanobiosensor.  相似文献   

4.
    
White spot syndrome virus (WSSV) remains as one of the most dreadful pathogen of the shrimp aquaculture industry owing to its high virulence. The cumulative mortality reaches up to 100% within in 2–10 days in a shrimp farm. Currently, no chemotherapeutics are available to control WSSV. The viral envelope protein, VP28, located on the surface of the virus particle acts as a vital virulence factor in the initial phases of inherent WSSV infection in shrimp. Hence, inhibition of envelope protein VP28 could be a novel way to deal with infection by inhibiting its interaction in the endocytic pathway. In this direction, a timely attempt was made to recognize a potential drug candidate of marine origin against WSSV using VP28 as a target by employing in silico docking and molecular dynamic simulations. A virtual library of 388 marine bioactive compounds was extracted from reports published in Marine Drugs. The top ranking compounds from docking studies were chosen from the flexible docking based on the binding affinities (ΔGb). In addition, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions. The results suggested that the two compounds obtained a negative binding free energy with −40.453 kJ/mol and −31.031 kJ/mol for compounds with IDs 30797199 and 144162 respectively. The RMSD curve indicated that 30797199 moves into the hydrophobic core, while the position of 144162 atoms changes abruptly during simulation and is mostly stabilized by water bridges. The shift in RMSD values of VP28 corresponding to ligand RMSD gives an insight into the ligand induced conformational changes in the protein. This study is first of its kind to elucidate the explicit binding of chemical inhibitor to WSSV major structural protein VP28.  相似文献   

5.
Recently, dengue virus has become a new emerging disease in the world. However, the procedures currently used for the detection of dengue virus are cumbersome and time-consuming. This is unfavorable for early stage epidemiological control and effective medical treatment. A new detection system was developed based on the quartz crystal microbalance (QCM) coating using two monoclonal antibodies that act specifically against the dengue virus envelope protein (E-protein) and non-structural 1 protein (NS-1 protein), respectively. Three different immobilizing methods, the glutaraldehyde (GA) method, protein A method and carbodiimide method (1-ethyl-3-(3-dimethyl- aminopropyl) carbodiimide, EDC) were used to prepare the immunochips. The “cocktail” immunochip, which has both antibodies attached, was also fabricated and used in comparison. The results showed that the protein A method was the best among the three. The sensitivity of the immunochip was 100-fold greater than the conventional sandwich ELISA method. The cocktail immunochip had a higher signal level than the normal immunochip. The time required for detection was shorter (about 1 h) and a blood specimen could be used to detect the virus in the viremia phase.  相似文献   

6.
Cancer is a genomic disease characterised as impaired cellular energy metabolism. Cancer cells derive most of their energy from oxidative phosphorylation unlike normal ones during cell progression TSPO protein present in external mitochondrial membrane, is involved in various cellular functions like Cell proliferation, mitochondrial respiration, synthesis of steroids and also participates in import of cholesterol into the inner mitochondrial membrane from outside of the membrane of mitochondria.The 3D model of TSPO protein is built using comparative homology modelling techniques and validated by proSA, Ramachandran plot and ERRAT in the present work. Active site prediction is carried out using SiteMap and literature, which allows the prediction of the important binding pockets for the identification of putative active site. New molecular entities as TSPO inhibitors were obtained from Virtual screening using MS Spectrum databank in Schrodinger suite and were prioritised based on Glide Score. Docking was performed using Autodock to identify molecules with different scaffolds and were prioritised based on binding energy and RMSD values. Qikprop is used to calculate pharmacokinetic properties of the screened molecules which are found to be in permissible range as possible novel inhibitors of TSPO protein to supress cell proliferation.  相似文献   

7.
Rift Valley fever virus (RVFV) is a potent human and livestock pathogen endemic to sub-Saharan Africa and the Arabian Peninsula that has potential to spread to other parts of the world. Although there is no proven effective and safe treatment for RVFV infections, a potential therapeutic target is the virally encoded nucleocapsid protein (N). During the course of infection, N binds to viral RNA, and perturbation of this interaction can inhibit viral replication. To gain insight into how N recognizes viral RNA specifically, we designed an algorithm that uses a distance matrix and multidimensional scaling to compare the predicted secondary structures of known N-binding RNAs, or aptamers, that were isolated and characterized in previous in vitro evolution experiment. These aptamers did not exhibit overt sequence or predicted structure similarity, so we employed bioinformatic methods to propose novel aptamers based on analysis and clustering of secondary structures. We screened and scored the predicted secondary structures of novel randomly generated RNA sequences in silico and selected several of these putative N-binding RNAs whose secondary structures were similar to those of known N-binding RNAs. We found that overall the in silico generated RNA sequences bound well to N in vitro. Furthermore, introduction of these RNAs into cells prior to infection with RVFV inhibited viral replication in cell culture. This proof of concept study demonstrates how the predictive power of bioinformatics and the empirical power of biochemistry can be jointly harnessed to discover, synthesize, and test new RNA sequences that bind tightly to RVFV N protein. The approach would be easily generalizable to other applications.  相似文献   

8.
A multi-analyte biosensor based on nucleic acid hybridization and liposome signal amplification was developed for the rapid serotype-specific detection of Dengue virus. After RNA amplification, detection of Dengue virus specific serotypes can be accomplished using a single analysis within 25 min. The multi-analyte biosensor is based on single-analyte assays (see Baeumner et al (2002) Anal Chem 74:1442–1448) developed earlier in which four analyses were required for specific serotype identification of Dengue virus samples. The multi-analyte biosensor employs generic and serotype-specific DNA probes, which hybridize with Dengue RNA that is amplified by the isothermal nucleic acid sequence based amplification (NASBA) reaction. The generic probe (reporter probe) is coupled to dye-entrapping liposomes and can hybridize to all four Dengue serotypes, while the serotype-specific probes (capture probes) are immobilized through biotin–streptavidin interaction on the surface of a polyethersulfone membrane strip in separate locations. A mixture of amplified Dengue virus RNA sequences and liposomes is applied to the membrane and allowed to migrate up along the test strip. After the liposome-target sequence complexes hybridize to the specific probes immobilized in the capture zones of the membrane strip, the Dengue serotype present in the sample can be determined. The amount of liposomes immobilized in the various capture zones directly correlates to the amount of viral RNA in the sample and can be quantified by a portable reflectometer. The specific arrangement of the capture zones and the use of unlabeled oligonucleotides (cold probes) enabled us to dramatically reduce the cross-reactivity of Dengue virus serotypes. Therefore, a single biosensor can be used to detect the exact Dengue serotype present in the sample. In addition, the biosensor can simultaneously detect two serotypes and so it is useful for the identification of possible concurrent infections found in clinical samples. The various biosensor components have been optimized with respect to specificity and sensitivity, and the system has been ultimately tested using blind coded samples. The biosensor demonstrated 92% reliability in Dengue serotype determination. Following isothermal amplification of the target sequences, the biosensor had a detection limit of 50 RNA molecules for serotype 2, 500 RNA molecules for serotypes 3 and 4, and 50,000 molecules for serotype 1. The multi-analyte biosensor is portable, inexpensive, and very easy to use and represents an alternative to current detection methods coupled with nucleic acid amplification reactions such as electrochemiluminescence, or those based on more expensive and time consuming methods such as ELISA or tissue culture.  相似文献   

9.
10.
Fragment-based drug discovery approaches allow for a greater coverage of chemical space and generally produce high efficiency ligands. As such, virtual and experimental fragment screening are increasingly being coupled in an effort to identify new leads for specific therapeutic targets. Fragment docking is employed to create target-focussed subset of compounds for testing along side generic fragment libraries. The utility of the program Glide with various scoring schemes for fragment docking is discussed. Fragment docking results for two test cases, prostaglandin D2 synthase and DNA ligase, are presented and compared to experimental screening data. Self-docking, cross-docking, and enrichment studies are performed. For the enrichment runs, experimental data exists indicating that the docking decoys in fact do not inhibit the corresponding enzyme being examined. Results indicate that even for difficult test cases fragment docking can yield enrichments significantly better than random. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
We have developed a method that uses energetic analysis of structure-based fragment docking to elucidate key features for molecular recognition. This hybrid ligand- and structure-based methodology uses an atomic breakdown of the energy terms from the Glide XP scoring function to locate key pharmacophoric features from the docked fragments. First, we show that Glide accurately docks fragments, producing a root mean squared deviation (RMSD) of <1.0 Å for the top scoring pose to the native crystal structure. We then describe fragment-specific docking settings developed to generate poses that explore every pocket of a binding site while maintaining the docking accuracy of the top scoring pose. Next, we describe how the energy terms from the Glide XP scoring function are mapped onto pharmacophore sites from the docked fragments in order to rank their importance for binding. Using this energetic analysis we show that the most energetically favorable pharmacophore sites are consistent with features from known tight binding compounds. Finally, we describe a method to use the energetically selected sites from fragment docking to develop a pharmacophore hypothesis that can be used in virtual database screening to retrieve diverse compounds. We find that this method produces viable hypotheses that are consistent with known active compounds. In addition to retrieving diverse compounds that are not biased by the co-crystallized ligand, the method is able to recover known active compounds from a database screen, with an average enrichment of 8.1 in the top 1% of the database.  相似文献   

12.

Background  

Vaccinia virus gene B1R encodes a serine/threonine protein kinase. In vitro this protein kinase phosphorylates ribosomal proteins Sa and S2 and vaccinia virus protein H5R, proteins that become phosphorylated during infection. Nothing is known about the sites phosphorylated on these proteins or the general substrate specificity of the kinase. The work described is the first to address these questions.  相似文献   

13.
Protein C (PC), a 62 kDa multi-modular zymogen, is activated to an anticoagulant serine protease (activated PC or APC) by thrombin bound to thrombomodulin on the surface of endothelial cells. PC/APC interacts with many proteins and the characterisation of these interactions is not trivial. However, molecular modelling methods help to study these complex biological processes and provide basis for rational experimental design and interpretation of the results. PC/APC consists of a Gla domain followed by two EGF modules and a serine protease domain. In this report, we present two structural models for full-length APC and two equivalent models for full-length PC, based on the X-ray structures of Gla-domainless APC and of known serine protease zymogens. The overall elongated shape of the models is further cross-validated using size exclusion chromatography which allows evaluation of the Stokes radius (rs for PC = 33.15 Å rs for APC = 34.19 Å), frictional ratio and axial ratio. We then propose potential binding sites at the surface of PC/APC using surface hydrophobicity as a determinant of the preferred sites of intermolecular recognition. Most of the predicted binding sites are consistent with previously reported experimental data, while some clusters highlight new regions that should be involved in protein-protein interactions.  相似文献   

14.
Tribbles homolog 3 (TRIB3) protein is inhibiting the insulin signaling by directly binding to the Akt/PKB leading to insulin resistance in the pancreas causing type 2 diabetes mellitus. Hence, TRIB3 protein is considered as a possible drug target for the new lead identification against type 2 diabetes. In the present study, the homology model of TRIB3 protein was generated to explore its biochemical function and molecular interactions in the new lead identification. The energy minimization of TRIB3 protein was carried out and evaluated by validation protocols for structure reliability. The druggable binding site of TRIB3 protein was identified for the virtual screening and molecular docking studies. The Asinex-fragments library of 22634 small molecules was docked at TRIB3 active site using the Glide module to identify new chemical entities. A total of 9 molecules were identified as final hits from virtual screening and their potency was ranked using Glide score, Glide energies, and residues interactions. The 6 prioritized lead molecules were further optimized using AutoDock, Prime MM/GBSA, and percentage of human oral absorption for the identification of potential leads. The molecules L2, L5, and L6 are identified as lead inhibitors and are showing consistent interactions with key residues Glu194 and Lys196 of TRIB3 protein. The identified potential leads were analyzed by ADME properties for their drug likeness and HergIC50 values are predicted for the prevention of preclinical failures. The present work sheds light on the identification of the best lead molecules against TRIB3 protein and offers a route to design as novel potential drug candidates for T2DM.  相似文献   

15.
16.
17.
Four glutathione (GSH) conjugates and two thiols were detected when depsipeptide FK228, formerly FR901228, a naturally occurring potent histone deacetylase (HDAC) inhibitor, was incubated in rat or human plasma in the presence of GSH. Their structures were elucidated by the high-performance liquid chromatography/electrospray ionization multi-stage mass spectrometry (HPLC/ESI-MS(n)) technique, and in some cases confirmed by accurate mass measurement. These products were also detected in rat and human blood homogenates following their incubation with FK228, but were not detected in GSH solution alone. A possible scheme for its formation is proposed. One of the thiols has recently been found to be more active as a histone deacetylase inhibitor than the parent compound.  相似文献   

18.
Assembly of viral protein coats is crucial to the protection of internal genetic cargo and is necessary for proper infection. Understanding the conditions for maintaining these supramolecular assemblies is of value for engineering-effective virus-based materials and related technologies. In this study, we examine the stability of the filamentous bacteriophage, fd-tet, in a variety of solvent and temperature conditions. On the basis of these results, we advise amenable reaction environments for modification of fd-tet. In particular, assessment of the temperature stability indicates that practical use of these viruses as reaction substrates is best performed at moderate temperatures, since loss in infectivity was found to occur within only 1-h incubation over 37°C. In addition, these findings reveal additional loss of infectivity after exposure to conditions near pH 4.5 which may be attributable to changes in the effective charge of the p8 major coat protein.  相似文献   

19.
The total synthesis of the natural product cytostatin is described which inhibits protein phosphatase 2A. Cytostatin has anti-metastatic properties and induces apoptosis. On the basis of this synthesis the relative and absolute configuration of cytostatin could be assigned. Key structural elements of cytostatin are an alpha,beta-unsaturated lactone group and a side chain embodying a phosphate and a rather unstable (Z,Z,E)-triene subunit. In addition, the natural product carries six stereocenters. For the construction of the stereocenters reagent-controlled transformations were used in order to ensure maximum stereochemical flexibility. The Evans syn-aldol reaction was chosen to establish the stereochemistry at C-4, C-5, C-9 and C-10; C-6 was introduced by means of the Evans asymmetric alkylation. In all cases the same chiral auxiliary was employed as stereodirecting group. The stereocenter at C-11 was established by an asymmetric reduction using CBS-oxazaborolidine. Temporary protection of the phosphate group was achieved best by using the base-labile 9-fluorenylmethyl group, which could be cleanly cleaved by an excess of triethylamine; this reaction yielded analytically pure phosphates after a simple aqueous work-up. The (Z,Z,E)-triene embodied in cytostatin was synthesized by means of a Stille coupling as key transformation. The synthesis sequence established in this way readily gave access to a series of analogues with simplified structure. Initial biological testing of these analogues proved that the alpha,beta-unsaturated lactone, the C-11-hydroxy group and a fully deprotected phosphate moiety at C-9 are essential for the PP2A-inhibitory activity of cytostatin. The rather unstable triene moiety in the side chain can be replaced by other lipophilic residues with only moderate decrease of biological activity. Other phosphatases, that is, PP1, VHR, PTP1B, CD45, were not inhibited by cytostatin or any of the analogues, demonstrating the high selectivity of this compound. These findings will be useful for the design and synthesis of cytostatin-derived chemical tools for the study of biological processes influenced by PP2A.  相似文献   

20.
Biomarkers held both incredible application and significant challenge in probing the oxidation mechanisms of proteins under oxidative stress. Here, mass spectrometry (MS) coupled with liquid chromatography (LC) was applied to establish a new pipeline to probe the oxidation sites and degrees of horse cytochrome c (HCC) with its oxidative products serving as the biomarkers. Samples of native and UV/H(2)O(2) oxidized HCCs were digested by trypsin and subjected to biomarker discovery using LC/MS and tandem mass spectrometry (MS/MS). Experiment results proved that the main oxidation sites were located at Cys(14), Cys(17), Met(65) and Met(80) residues in peptides C(14)AQC(heme)HTVEK(22), C(14)AQCHTVEK(22), E(60)ETLMEYLENPKK(73), M(80)IFAGIK(86) and M(80)IFAGIKK(87). Quantitative analysis on the oxidized peptides showed the oxidation degrees of target sites had positive correlations with extended oxidation dose and controlled by residues types and their accessibility to solvent molecules. Being able to provide plentiful information for the oxidation sites and oxidation degrees, the identified oxidized products were feasibility biomarkers for HCC oxidation, compared with the conventional protein carbonyl assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号