首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dengue virus (DENV) has emerged as a rapidly spreading epidemic throughout the tropical and subtropical regions around the globe. No suitable drug has been designed yet to fight against DENV, therefore, the need for safe and effective antiviral drug has become imperative. The envelope protein of DENV is responsible for mediating the fusion process between viral and host membranes. This work reports an in silico approach to target B and T cell epitopes for dengue envelope protein inhibition. A conserved region “QHGTI” in B and T cell epitopes of dengue envelope glycoprotein was confirmed to be valid for targeting by visualizing its interactions with the host cell membrane TIM-1 protein which acts as a receptor for serotype 2 and 3. A reverse pharmacophore mapping approach was used to generate a seven featured pharmacophore model on the basis of predicted epitope. This pharmacophore model as a 3D query was used to virtually screen a chemical compounds dataset “Chembridge”. A total of 1010 compounds mapped on the developed pharmacophore model. These retrieved hits were subjected to filtering via Lipinski’s rule of five, as a result 442 molecules were shortlisted for further assessment using molecular docking. Finally, 14 hits of different structural properties having interactions with the active site residues of dengue envelope glycoprotein were selected as lead candidates. These structurally diverse lead candidates have strong likelihood to act as further starting structures in the development of novel and potential drugs for the treatment of dengue fever.  相似文献   

2.
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.  相似文献   

3.
Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.  相似文献   

4.
Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (Kd values) and non-linear chromatography can be used to assess the association (kon) and dissociation (koff) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.  相似文献   

5.
The three parts(Stx17B, Stx27B and StxB) of Shiga toxin B subunit have been fused into a cell surface exposed loop of the LamB protein at a BamH I site between residues 153 and 154. Western blotting revealed that the three parts of Shiga toxin B subunit could be expressed as the Lamb fusion proteins in E. coli. Indirect immunofluorescence and immunoelectron microscopy analyses showed fusion proteins LamB/Stx17B and LamB/Stx27B could be expressed at cell surface in E. coli, but fusion protein LamB/StxB could not be expressed at cell surface; it was aggregated in cytoplasm and was toxic to host. This expression system provided a new way to construct an oral live vaccine against Shigella dysenteriae 1.  相似文献   

6.
The worldwide health emergency of the SARS-CoV-2 pandemic and the absence of a specific treatment for this new coronavirus have led to the use of computational strategies (drug repositioning) to search for treatments. The aim of this work is to identify FDA (Food and Drug Administration)-approved drugs with the potential for binding to the spike structural glycoprotein at the hinge site, receptor binding motif (RBM), and fusion peptide (FP) using molecular docking simulations. Drugs that bind to amino acids are crucial for conformational changes, receptor recognition, and fusion of the viral membrane with the cell membrane. The results revealed some drugs that bind to hinge site amino acids (varenicline, or steroids such as betamethasone while other drugs bind to crucial amino acids in the RBM (naldemedine, atovaquone, cefotetan) or FP (azilsartan, maraviroc, and difluprednate); saquinavir binds both the RBM and the FP. Therefore, these drugs could inhibit spike glycoprotein and prevent viral entry as possible anti-COVID-19 drugs. Several drugs are in clinical studies; by focusing on other pharmacological agents (candesartan, atovaquone, losartan, maviroc and ritonavir) in this work we propose an additional target: the spike glycoprotein. These results can impact the proposed use of treatments that inhibit the first steps of the virus replication cycle.  相似文献   

7.
We previously showed for the proteins BCL-XL, IL-2, and MDM2 that transient pockets at their protein–protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein–protein interfaces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Detailed understanding of protein–ligand interactions is crucial to the design of more effective drugs. This is particularly true when targets are protein interfaces which have flexible, shallow binding sites that exhibit substantial structural rearrangement upon ligand binding. In this study, we use molecular dynamics simulations and free energy calculations to explore the role of ligand-induced conformational changes in modulating the activity of three generations of Bcl-XL inhibitors. We show that the improvement in the binding affinity of each successive ligand design is directly related to a unique and measurable reduction in local flexibility of specific regions of the binding groove, accompanied by the corresponding changes in the secondary structure of the protein. Dynamic analysis of ligand–protein interactions reveals that the latter evolve with each new design consistent with the observed increase in protein stability, and correlate well with the measured binding affinities. Moreover, our free energy calculations predict binding affinities which are in qualitative agreement with experiment, and indicate that hydrogen bonding to Asn100 could play a prominent role in stabilizing the bound conformations of latter generation ligands, which has not been recognized previously. Overall our results suggest that molecular dynamics simulations provide important information on the dynamics of ligand–protein interactions that can be useful in guiding the design of small-molecule inhibitors of protein interfaces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
Summary Proteins could be used to carry and deliver small compounds. As a tool for designing ligand binding sites in protein cores, a three-step virtual screening method is presented that has been optimised using existing data on T4 lysozyme complexes and tested in a newly engineered cavity in flavodoxin. The method can pinpoint, in large databases, ligands of specific protein cavities. In the first step, physico-chemical filters are used to screen the library and discard a majority of compounds. In the second step, a flexible, fast docking procedure is used to score and select a smaller number of compounds as potential binders. In the third step, a finer method is used to dock promising molecules of the hit list into the protein cavity, and an optimised free energy function allows discarding the few false positives by calculating the affinity of the modelled complexes. To demonstrate the portability of the method, several cavities have been designed and engineered in the flavodoxin from Anabaena PCC 7119, and the W66F/L44A double mutant has been selected as a suitable host protein. The NCI database has then been screened for potential binders, and the binding to the engineered cavity of five promising compounds and three tentative non-binders has been experimentally tested by thermal up-shift assays and spectroscopic titrations. The five tentative binders (some apolar and some polar), unlike the three tentative non-binders, are shown to bind to the host mutant and, importantly, not to bind to the wild type protein. The three-step virtual screening method developed can thus be used to identify ligands of buried protein cavities. We anticipate that the method could also be used, in a reverse manner, to identify natural or engineerable protein cavities for the hosting of ligands of interest.  相似文献   

11.
Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the ‘open’ conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.  相似文献   

12.
Controlling the guest expulsion process from a receptor is of critical importance in various fields. Several coordination cages have been recently designed for this purpose, based on various types of stimuli to induce the guest release. Herein, we report the first example of a redox‐triggered process from a coordination cage. The latter integrates a cavity, the panels of which are based on the extended tetrathiafulvalene unit (exTTF). The unique combination of electronic and conformational features of this framework (i.e. high π‐donating properties and drastic conformational changes upon oxidation) allows the reversible disassembly/reassembly of the redox‐active cavity upon chemical oxidation/reduction, respectively. This cage is able to bind the three‐dimensional B12F122? anion in a 1:2 host/guest stoichiometry. The reversible redox‐triggered disassembly of the cage could also be demonstrated in the case of the host–guest complex, offering a new option for guest‐delivering control.  相似文献   

13.
Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1–282-allosteric inhibitor complex crystal structure lacks α7 (287–298) and moreover there is no available 3D structure of PTP1B1–298 in open form. As the interaction between α7 and α6–α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1–282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7–α6–α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The theoretical prediction of the association of a flexible ligand with a protein receptor requires efficient sampling of the conformational space of the ligand. Several docking methodologies are currently available. We propose a new docking technique that performs well at low computational cost. The method uses mutually orthogonal Latin squares to efficiently sample the docking space. A variant of the mean field technique is used to analyze this sample to arrive at the optimum. The method has been previously applied to explore the conformational space of peptides and identify structures with low values for the potential energy. Here we extend this method to simultaneously identify both the low energy conformation as well as a ‘high-scoring’ docking mode. Application of the method to 56 protein–peptide complexes, in which the length of the peptide ligand ranges from three to seven residues, and comparisons with Autodock 3.05, showed that the method works well. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Diseases caused by flaviviruses, such as dengue and zika, are globally recognized as major threats. During infection, a critical point in their replicative cycle is the maturation step, which occurs throughout the cellular exocytic pathway. This step is a pH-dependent process that involves the modification of the viral envelope by converting prM (pre-membrane) into M (membrane) proteins with the release of a “pr peptide”. After this reaction, the pr peptides remain bound to the viral envelope while the virions cross the acidic trans-Golgi network, and are released only at neutral pH after secretion of the virus particles. Despite this current knowledge, the molecular basis of the flavivirus maturation step is largely unknown. Here, based on the crystal structure of the dengue pr–E complex (“pr peptide” bound to virus envelope protein) and using molecular dynamics simulations, we found that the pH shift from acidic to neutral yields considerable structural changes in the system. Dynamic cross correlation maps and root mean square deviation analyses revealed that the pr–E junction is clearly unstable under neutral pH. Secondary structure analysis also revealed that the fusion loop region, present in the E protein, is sensitive to pH and tends to unstructure at a neutral environment. Moreover, we found that five residues present in the E protein, Gly102, His244, Thr70, Thr68 and Asn67 are critical to confer stability to the pr–E complex while inside the Golgi apparatus. This work brings details about the dynamical behavior of the pr–E system, helps to better understand the flavivirus biology and may also be of use in the development of novel antiviral strategies.  相似文献   

16.
Japanese encephalitis virus (JEV) is an important pathogen causing febrile syndrome, encephalitis, and death. Envelop (E) glycoprotein is the major target of inducing neutralizing antibodies and protective immunity in host. In this study, E glycoprotein of JEV was expressed in Spodoptera frugiperd 9 cells as a fusion protein containing a gX signal sequence of pseudorabies virus. This purified HcE recombinant protein was evaluated for their immunogenicity and protective efficacy in guinea pig. The survival rates of guinea pig immunized with HcE protein was significantly increased over that of JE vaccine. This result indicates helpful information for developing a subunit vaccine against JEV.  相似文献   

17.
《化学:亚洲杂志》2017,12(23):3077-3087
One of the important determinants in the efficiency of a molecular interaction is the necessity for conformational changes in host and/or guest molecules upon binding. In small‐molecule interactions with nucleic acids, conformational changes on both molecules are often involved, especially in intercalating binding. Mismatch binding ligands (MBLs) we described here consist of two heterocycles that predominantly exist in one conformation, so it is of interest to determine if such molecules can bind to any DNA and RNA structures. One molecule, 1 ‐NHR, which predominantly exists as the unstacked conformation in aqueous solvent, has been successfully synthesized and characterized. Compound 1 ‐NHR did not efficiently bind to GX/Y DNA and RNA sequences, but the binding pattern is different from that of authentic MBL naphthyridine carbamate dimer. In vitro selection of RNA that specifically binds to 1 ‐NHR was performed from pre‐miR‐29a loop library RNA, and one RNA, to which 1 ‐NHR bound with high affinity, has been successfully identified. Although it was anticipated that 1 ‐NHR, with a predominantly unstacked conformation, would show entropy‐driven binding, isothermal titration calorimetry analysis suggested that the binding of 1 ‐NHR to RNA was enthalpy driven with an apparent K d of about 100 nm .  相似文献   

18.
Circular dichroism and Fourier-transform infrared spectroscopies were used to compare the conformational mobility of 13-mer peptides covering the 317-329 region of the envelope protein hemagglutinin of human influenza A virus subtypes H1, H2 and H3 with that of their truncated deca- and nonapeptide analogs. These peptides were demonstrated to bind to the murine I-Ed major histocompatibility complex encoded class II and human HLA-B*2705 class I molecules. Despite the amino acid substitutions in the three 13-mer subtype sequences, no significant differences in the conformational properties could be shown. Deletion of the N-terminal three residues resulted in a shift to an increased alpha-helical conformer population in the 317-329 H1 peptide and the breakage of the 3(10) or weakly H-bonded (nascent) alpha-helix in the H2 and H3 peptides. The conformational change observed upon deletion did not influence the efficiency of I-Ed peptide interaction, however, the C-terminal Arg had a beneficial effect both on MHC class II and class I binding without causing any remarkable change in solution conformation.  相似文献   

19.
Linear peptides derived from the HIV gp41 C-terminus (C-peptides), such as the 36-residue Fuzeon, are potent HIV fusion inhibitors. These molecules bind to the N-peptide region of gp41 and inhibit an intramolecular protein-protein interaction that powers fusion of the viral and host cell membranes. The N-peptide region contains a surface pocket that is occupied in the post-fusion state by three alpha-helical residues found near the gp41 C-terminus: Trp628, Trp631, and Ile635-the WWI epitope. Here, we describe a set of beta3-decapeptides (betaWWI-1-4) in which the WWI epitope is presented on one face of a short 14-helix stabilized by macrodipole neutralization and side chain-side chain salt bridges. betaWWI-1-4 bind in vitro to IZN17, a validated gp41 model, and inhibit syncytia formation in cell culture. Molecules lacking a complete WWI functional epitope neither bind IZN17 nor inhibit syncytia formation. These results provide evidence that short beta-peptide 14-helices can inhibit an intramolecular protein-protein interaction in vivo. Molecules related to betaWWI-1-4 could represent starting points for the development of highly potent inhibitors or antigens effective against HIV or other viruses, including SARS, Ebola, HRSV, and influenza, that employ common fusion mechanisms.  相似文献   

20.
HIV infection is initiated by fusion of the virus with the target cell through binding of the viral gp120 protein with the CD4 cell surface receptor protein and the CXCR4 or CCR5 co-receptors. There is currently considerable interest in developing novel ligands that can modulate the conformations of these co-receptors and, hence, ultimately block virus-cell fusion. This article describes a detailed comparison of the performance of receptor-based and ligand-based virtual screening approaches to find CXCR4 and CCR5 antagonists that could potentially serve as HIV entry inhibitors. Because no crystal structures for these proteins are available, homology models of CXCR4 and CCR5 have been built, using bovine rhodopsin as the template. For ligand-based virtual screening, several shape-based and property-based molecular comparison approaches have been compared, using high-affinity ligands as query molecules. These methods were compared by virtually screening a library assembled by us, consisting of 602 known CXCR4 and CCR5 inhibitors and some 4700 similar presumed inactive molecules. For each receptor, the library was queried using known binders, and the enrichment factors and diversity of the resulting virtual hit lists were analyzed. Overall, ligand-based shape-matching searches yielded higher enrichments than receptor-based docking, especially for CXCR4. The results obtained for CCR5 suggest the possibility that different active scaffolds bind in different ways within the CCR5 pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号