首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nuclear magnetic resonance for cultural heritage   总被引:2,自引:0,他引:2  
Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T(1) and T(2) relaxation data of fully water-saturated samples to get "pore size" distributions, but the use of T(2) requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time tau is used in Carr-Purcell-Meiboom-Gill experiments. When a portable single-sided NMR apparatus is used, large field gradients due to the instrument, at the scale of the sample, are thought to be the dominant dephasing cause. In this paper, T(1) and T(2) (at different tau values) distributions were measured in natural (Lecce stone) and artificial (brick samples coming from the Greek-Roman Theatre of Taormina) porous media of interest for cultural heritage by a standard laboratory instrument and a portable device. While T(1) distributions do not show any appreciable effect from inhomogeneous fields, T(2) distributions can show strong effects, and a procedure is presented based on the dependence of 1/T(2) on tau to separate pore-scale gradient effects from sample-scale gradient effects. Unexpectedly, the gradient at the pore scale can be, in some cases, strong enough to make negligible the effects of gradients at the sample scale of the single-sided device.  相似文献   

2.
Composite materials of epoxy resins reinforced by carbon fibers are increasingly being used in the construction of aircraft. In these applications, the material may be thermally damaged and weakened by jet blast and accidental fires. The feasibility of using proton NMR relaxation times T1, T1rho, and T2 to detect and quantify the thermal damage is investigated. In conventional spectrometers with homogeneous static magnetic fields, T1rho is readily measured and is found to be well correlated with thermal damage. This suggests that NMR measurements of proton T1rho may be used for non-destructive evaluation of carbon fiber-epoxy composites. Results from T1rho measurements in the inhomogeneous static and RF magnetic fields of an NMR-MOUSE are also discussed.  相似文献   

3.
New applications of the NMR-MOUSE (mobile universal surface explorer) to non-destructive quality control of elastomers are reported. One example concern the thermal aging of fast clutches which was probed by measurements of 1H transverse relaxation time. Novel methodological developments show that 1H double-quantum filtered NMR signals can be generated in the inhomogeneous fields of the NMR-MOUSE for characterization of residual dipolar couplings. This technique was applied to characterize reference natural rubber samples with different crosslink density and carbon black and silica fillers.  相似文献   

4.
The possibility of exciting and filtering various multipolar spin states in proton NMR like dipolar encoded longitudinal magnetization (LM), double-quantum (DQ) coherences, and dipolar order (DO) in strongly inhomogeneous static and radio-frequency magnetic fields is investigated. For this purpose pulse sequences which label and manipulate the multipolar spin states in a specific way were implemented on the NMR-MOUSE (mobile universal surface explorer). The performance of the pulse sequences was also tested in homogeneous fields on a solid-state high-field NMR spectrometer. The theoretical justification of these procedures was shown for a rigid two-spin 1/2 system coupled by dipolar interactions. Dipolar encoded longitudinal magnetization decay curves, double-quantum and dipolar-order buildup curves, as well as double-quantum decay curves were recorded with the NMR-MOUSE for natural rubber samples with different crosslink density. The possibility of using these multipolar spin states for investigations of strained elastomers by NMR-MOUSE is also shown. These curves give access to quantitative values of the ratio of the total residual dipolar couplings of the protons in the series of samples which are in good agreement with those measured in homogeneous fields.  相似文献   

5.
The response of the spin system has been investigated by numerical simulations in the case of a nuclear magnetic resonance (NMR) experiment performed in inhomogeneous static and radiofrequency fields. The particular case of the NMR-MOUSE was considered. The static field and the component of the radiofrequency field perpendicular to the static field were evaluated as well as the spatial distribution of the maximum NMR signal detected by the surface coil. The NMR response to various pulse sequences was evaluated numerically for the case of an ensemble of isolated spins (1/2). The behavior of the echo train in Carr-Purcell-like pulse sequences used for measurements of transverse relaxation and self-diffusion was simulated and compared with the experiment. The echo train is shown to behave qualitatively differently depending on the particular phase schemes used in these pulse sequences. Different echo trains are obtained, because of the different superposition of Hahn and stimulated echoes forming mixed echoes as a result of the spatial distribution of pulse flip angles. The superposition of Hahn and stimulated echoes originating from different spatial regions leads to distortions of the mixed echoes in intensity, shape, and phase. The volume selection produced by Carr-Purcell-like pulse sequences is also investigated for the NMR-MOUSE. The developed numerical simulation procedure is useful for understanding a variety of experiments performed with the NMR-MOUSE and for improving its performance. Copyright 2000 Academic Press.  相似文献   

6.
NMR relaxation time distributions, obtained with laboratory and portable devices, are utilized to characterize the pore-size distributions of building materials coming from the Roman remains of the Greek-Roman Theatre of Taormina. To validate the interpretation of relaxation data in terms of pore-size distribution, comparison of results from standard and in situ NMR experiments with results of the mercury intrusion porosimetry (MIP) has been made. Although the pore-size distributions can be obtained by NMR in terms of either longitudinal (T1) or transverse (T2) relaxation times distributions, the shorter duration of the T2 measurement makes it, in principle, preferable, although the determination of T2 distributions is not necessarily an easy alternative to finding T1 distributions. Among other things, the T1 distribution is almost independent of the inhomogeneity of the magnetic field, while the T2 distribution is strongly influenced by it. This paper was aimed at answering two questions: what are the validity limits to interpret NMR data in terms of pore-size distributions and whether the portable device can successfully be applied as a non-destructive and non-invasive tool for in situ NMR analysis of building materials, particularly those of Cultural Heritage interest.  相似文献   

7.
The objective of the study was to pinpoint the effect of stress induced rock matrix alterations on NMR-wireline-log measurements by means of laboratory T1 and T2 relaxation time measurements. The research activities were subdivided into two major parts: NMR relaxation measurements on a brine saturated outcrop sandstone (Red Wildmoor Sandstone) during uniaxial compressional tests and NMR relaxation measurements on artificial sandstone samples prepared with defined crack patterns. T1-measurements performed on Red Wildmoor samples during compaction showed a decrease in the mean relaxation rate 1/exp相似文献   

8.
Ordered tissue like tendon is known to exhibit the magic-angle phenomenon in magnetic resonance investigations. Due to the anisotropic structure the transverse relaxation time T(2) depends on the orientation of the tendon in the magnetic field. In medical imaging, relaxation measurements of tendon orientation are restricted by the size of the object and the space available in the magnet. For humans, tendon orientation can only be varied within small limits. As a consequence, the magic-angle phenomenon may lead to a misjudgement of tendon condition. It is demonstrated that the NMR-MOUSE (mobile universal surface explorer), a hand-held NMR sensor, can be employed to investigate the anisotropy of T(2) in Achilles tendon in vivo. The NMR-MOUSE provides a convenient tool for analyzing the correlation of T(2) and the physical condition of tendon.  相似文献   

9.
Single-side NMR is particularly suitable for measurements of segmental anisotropy induced in elastomers by uniaxial forces or local strain. Proton transverse nuclear magnetic relaxation was investigated with the NMR-MOUSE by recording the Hahn-echo decay in cross-linked natural rubber bands. This provided information on the dependence of the Hahn-echo decay on the angle between the direction of the uniaxial stretching force and the axis Z defined direction perpendicular to the magnet pole faces of the NMR-scanner. The anisotropy effect on the Hahn-echo decay is correlated with the extension ratio, and it is more evident in the liquid-like regime of the decay. A weaker segmental anisotropy is detected by 1H solid- and Hahn-echo decays recorded by multi-pulse sequences. A qualitative understanding of the angular dependence is obtained by an analytical theory of the Hahn-echo decay adapted to the case of stretched elastomers and to strongly inhomogeneous magnetic fields. Using angular-dependent 1H residual second van Vleck moments and correlation times reported previously [P.T. Callaghan and E.T. Samulski, Macromolecules 30, 113 (1997)] from stretched natural rubber bands the segmental anisotropy measured in inhomogeneous magnetic fields by the Hahn-echo decay was numerically simulated. As an example of a macroscopic distribution of local segmental anisotropy, 1H Hahn-echo decays were measured by the NMR-MOUSE sensor in a stretched cross-linked natural rubber plate with a circular cut in the center.  相似文献   

10.
A new, portable NMR magnet with a tailored magnetic field profile and a complementary radio frequency sensor have been designed and constructed for the purpose of probing in situ the sub-surface porosity of cement based materials in the built environment. The magnet is a one sided device akin to a large NMR-MOUSE with the additional design specification of planes of constant field strength /B0/ parallel to the surface. There is a strong gradient G in the field strength perpendicular to these planes. As with earlier GARField magnets, the ratio G//:B0/ is a system constant although the method of achieving this condition is substantially different. The new magnet as constructed is able to detect signals 50mm (1H NMR at 3.2 MHz) away from the surface of the magnet and can profile the surface layers of large samples to a depth of 35-40 mm by moving the magnet, and hence the resonant plane of the polarising field, relative to the sample surface. The matching radio frequency excitation/detector coil has been designed to complement the static magnetic field such that the polarising B0 and sensing B1 fields are, in principal, everywhere orthogonal. Preliminary spatially resolved measurements are presented of cement based materials, including two-dimensional T1-T2 relaxation correlation spectra.  相似文献   

11.
Hole-burning NMR in strongly inhomogeneous fields   总被引:1,自引:0,他引:1  
Different pulse sequences for frequency-selective NMR in the highly inhomogeneous fields of single-sided NMR are explored. A modified Hahn-echo is used to burn a hole in the spectrum of the detected echo. The hole diminishes following molecular dynamics on the scale of the echo time. Preliminary experiments were performed on pure water and natural rubber with the NMR-MOUSE. The results demonstrate the feasibility of hole burning to study slow molecular dynamics by mobile NMR in strongly inhomogeneous magnetic fields.  相似文献   

12.
A pulsed field gradient stimulated spin-echo NMR sequence is combined with imaging methods to spatially resolve velocity distributions and to measure 2D velocity maps ex situ. The implementation of these techniques in open sensors provides a powerful non-invasive tool to measure molecular displacement in a large number of applications inaccessible to conventional closed magnets. The method is implemented on an open tomograph that provides 3D spatial localization by combining slice selection in the presence of a uniform static magnetic field gradient along the depth direction with pulsed field gradients along the two lateral directions. Different pipe geometries are used to demonstrate that the sequence performs well even in the extremely inhomogeneous B0 and B1 fields of these sensors.  相似文献   

13.
The NMR-MOUSE is a unilateral and mobile NMR sensor which operates with highly inhomogeneous magnetic fields. To produce a mobile NMR unit, RF excitation is sought, which can be produced with the most simple equipment, in particular nonlinear, low-power amplifiers, and to observe a free induction decay in strongly inhomogeneous fields, the excitation needs to be selective. The possibility to produce selective excitation by sequences of hard low-power radiofrequency pulses in the strongly inhomogeneous magnetic fields of the NMR-MOUSE is explored. The use of the DANTE sequence for selection of magnetization from parts of the sensitive volume was investigated for longitudinal and transverse magnetization by computer simulations and experiments. The spectra of the recorded FIDs and echo signals are in good agreement with those simulated for the excitation, which verifies the concept of the DANTE excitation. The results obtained are an important step towards a low-power operation of the NMR-MOUSE to improve its mobility.  相似文献   

14.
The pulsed field gradient nuclear magnetic resonance (PFG NMR) method has proved to be a powerful non-invasive technique to measure molecular displacement in various systems. It has been largely implemented with conventional NMR magnets where the volume for housing the flow setup is restricted. In this work we present the first approach to measure velocity distributions ex situ implementing a pulsed field gradient sequence on a single-sided NMR sensor. The open geometry of these sensors provides access to NMR measurements of a large number of applications previously excluded by the geometry of conventional closed magnets. Both, the distortions to the displacement encoding observed when implementing a PFG sequence in the presence of strongly inhomogeneous B0 and B1 fields, and the performance of the modifications proposed to eliminate these distortions are shown by means of numerical simulations. An alternating stimulated spin-echo PFG sequence implemented to remotely measure velocity distributions was combined with a multi-echo acquisition scheme to significantly increase the sensitivity of the method. The technique was implemented to measure the velocity propagator in a fluid undergoing laminar flow and good agreement with the theoretical result is observed.  相似文献   

15.
Salt crystallisation process is one of the most powerful weathering agents in stone materials, especially in the coastal areas, where sea-spray transports large amount of salts on the stone surface. The consolidation of such degraded stone material represents a critical issue in the field of restoration of cultural heritage. In this paper, the nanolime consolidation behaviour in limestone degraded by salt crystallization has been assessed. For this purpose, a stone material taken from a Sicilian historical quarry and widely used in the eastern Sicilian Baroque architecture has been artificially degraded by the salt crystallization test. Then degraded samples have been treated with NanoRestore®, a suspension of nanolime in isopropyl alcohol. To evaluate the consolidating effectiveness, the peeling test and point load test were performed. Moreover, mercury intrusion porosimetry has been executed to evaluate the variations induced by treatment, while colorimetric measurements have been aimed to assess aesthetical issues.  相似文献   

16.
55Mn and 139La NMR measurements on a high quality single crystal of ferromagnetic (FM) La0.80Ca0.20MnO3 demonstrate the formation of localized Mn(3+,4+) states below 70 K, accompanied by a strong cooling-rate dependent increase of certain FM neutron Bragg peaks. (55,139)(1/T(1)) spin-lattice and (139)(1/T(2)) spin-spin relaxation rates are strongly enhanced on approaching this temperature from below, signaling a genuine phase transition at T(tr) approximately 70 K. The disappearance of the FM metallic signal by applying a weak external magnetic field, the different NMR radio-frequency enhancement of the FM metallic and insulating states, and the observed finite size scaling of T(tr) with Ca (hole) doping, as observed in powder La(1-x)CaxMnO3 samples, are suggestive of freezing into an inhomogeneous FM insulating and orbitally ordered state embodying "metallic" hole-rich walls.  相似文献   

17.
59Co NMR measurements on La1-xSrxCoO3 reported here establish unequivocally, for the first time, the coexistence of ferromagnetic regions, spin-glass regions, and hole-poor low spin regions at all x values from 0.1 to 0.5. A zero external field NMR spectrum, which is assigned to the ferromagnetic regions, has a spectral shape that is nearly x independent at 1.9 K, as are the relaxation times, T1 and T2. The integrated spectral area increases rapidly with x up to x = 0.2 and then decreases slightly for larger x. In a field of 9.97 T, a narrow NMR line is observed at 102 MHz, identical to that found in x = 0 samples in previous work. The integrated intensity of this spectrum decreases rapidly with increasing x, and is ascribed to hole-poor low spin regions. Beneath this spectrum, a third broad line, with a peak at 100 MHz, is assigned to a spin- or cluster-glass-like phase.  相似文献   

18.
The combined use of two unconventional NMR diffusometry techniques permits measurements of the self-diffusion coefficient of fluids confined in porous media in the time range from 100 microseconds to seconds. The fringe field stimulated echo technique (FFStE) exploits the strong steady gradient in the fringe field of a superconducting magnet. Using a standard 9.4 T (400 MHz) wide-bore magnet, for example, the gradient is 22 T/m at 375 MHz proton resonance and reaches 60 T/m at 200 MHz. Extremely short diffusion times can be probed on this basis. The magnetization grid rotating frame imaging technique (MAGROFI) is based on gradients of the radio frequency (RF) field. The RF gradients not necessarily need be constant since the data are acquired with spatial resolution along the RF gradient direction. MAGROFI is also well suited for unilateral NMR applications where all fields are intrinsically inhomogeneous. The RF gradients reached depend largely on the RF coil diameter and geometry. Using a conic shape, a value of at least 0.3 T/m can be reached which is suitable for long-time diffusion measurements. Both techniques do not require any special hardware and can be implemented on standard high RF power NMR spectrometers. As an application, the influence of the tortuosity increasing with the diffusion time is examined in a saturated porous silica glass.  相似文献   

19.
This work provides a generalized theory of proton relaxation in inhomogeneous magnetic fields. Three asymptotic regimes of relaxation are identified depending on the shortest characteristic time scale. Numerical simulations illustrate that the relaxation characteristics in the regimes such as the T(1)/T(2) ratio and echo spacing dependence are determined by the time scales. The theoretical interpretation is validated for fluid relaxation in porous media in which field inhomogeneity is induced due to susceptibility contrast of fluids and paramagnetic sites on pore surfaces. From a set of measurements on model porous media, we conclude that when the sites are small enough, no dependence on echo spacing is observed with conventional low-field NMR spectrometers. Echo spacing dependence is observed when the paramagnetic materials become large enough or form a 'shell' around each grain such that the length scale of the region of induced magnetic gradients is large compared to the diffusion length during the time of the echo spacing. The theory can aid in interpretation of diffusion measurements in porous media as well as imaging experiments in presence of contrast agents used in MRI.  相似文献   

20.
The simple pulse sequence thetax-tau1-2thetay-tau1+tau2-2thetay-tau2-Hahn echo used to measure the self-diffusion coefficient D under constant-relaxation condition, i.e., for tau1+tau2=const. was investigated in the presence of strongly inhomogeneous static as well as radiofrequency magnetic fields. The encoding of the Hahn-echo amplitude by the pulse flip angle and diffusion was evaluated by taking into account the spatial distribution of the off-resonance field, the strength and orientation of the local field gradients, and the pulse flip angles by a computer simulation program. As input files, this program uses maps of static and radiofrequency fields, and the D coefficient can be evaluated from the time dependence of the Hahn-echo amplitude. The method was applied to a mobile one-sided NMR sensor, NMR-MOUSE with a bar magnet by measuring D for a series of liquids with different viscosities. The method was shown to be particularly useful for measuring D of solvents in elastomers without the need for measurements of the transverse relaxation rates. The self-diffusion coefficient of toluene in a series of crosslinked natural rubber samples was measured and correlated with the crosslink density. Finally, the method was applied to measure the diffusion anisotropy of free water in bovine Achilles tendon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号