首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new compound LiNaFe[PO(4)]F was synthesized by a solid state reaction route, and its crystal structure was determined using neutron powder diffraction data. LiNaFe[PO(4)]F was characterized by (57)Fe M?ssbauer spectroscopy, magnetic susceptibility, specific heat capacity, and electrochemical measurements. LiNaFe[PO(4)]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9568(6) ?, b = 6.3959(3) ?, c = 11.4400(7) ?, V = 801.7(1) ?(3) and Z = 8. The structure consists of edge-sharing FeO(4)F(2) octahedra forming FeFO(3) chains running along the b axis. These chains are interlinked by PO(4) tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The specific heat and magnetization measurements show that LiNaFe[PO(4)]F undergoes a three-dimensional antiferromagnetic ordering at T(N) = 20 K. The neutron powder diffraction measurements at 3 K show that each FeFO(3) chain along the b-direction is ferromagnetic (FM), while these FM chains are antiferromagnetically coupled along the a and c-directions with a non-collinear spin arrangement. The galvanometric cycling showed that without any optimization, one mole of alkali metal is extractable between 1.0 V and 5.0 V vs. Li(+)/Li with a discharge capacity between 135 and 145 mAh g(-1).  相似文献   

2.
Synthetic mineral libethenite Cu(2)PO(4)OH was prepared by the hydrothermal method, and its structure at 200 K was refined by single-crystal X-ray diffraction. The structure of Cu(2)PO(4)OH is built up from Cu2(2)O(6)(OH)2 dimers of edge-sharing Cu2O(4)(OH) trigonal bipyramids and [Cu1(2)O(6)(OH)(2)] proportional chains of edge-sharing Cu1O(4)(OH)(2) octahedra. Magnetic properties of Cu(2)PO(4)OH were investigated by magnetic susceptibility, magnetization, and specific heat measurements. Cu(2)PO(4)OH is a spin-gap system with a spin gap of about 139 K. It was shown by spin dimer analysis that, to a first approximation, the magnetic structure of Cu(2)PO(4)OH is described by an isolated square-spin cluster model defined by the Cu1-O-Cu2 superexchange J with Cu1...Cu2 = 3.429 A. The fitting analysis of the magnetic susceptibility data with a square-spin cluster model results in J/k(B) = 138 K. Specific heat data show that Cu(2)PO(4)OH does not undergo a long-range magnetic ordering down to 1.8 K. We also report vibrational properties studied with Raman spectroscopy and the thermal stability of Cu(2)PO(4)OH.  相似文献   

3.
The distorted wolframite-type oxides CuWO4 and CuMoO4-III have a structure in which CuO4 zigzag chains, made up of cis-edge-sharing CuO6 octahedra, run along the c-direction and hence exhibit low-dimensional magnetic properties. We examined the magnetic structures of these compounds and their isostructural analogue Cu(Mo(0.25)W0.75)O4 on the basis of the spin-orbital interaction energies calculated for their spin dimers. Our study shows that these compounds consist of two-dimensional (2D) magnetic sheets defined by one superexchange (intrachain Cu-O-Cu) and three super-superexchange (interchain Cu-O.O-Cu) paths, the strongly interacting spin units of these 2D magnetic sheets are the two-leg antiferromagnetic (AFM) ladder chains running along the (a + c)-direction, and the spin arrangement between adjacent AFM ladder chains leads to spin frustration. The similarities and differences in the magnetic structures of CuWO4, CuMoO4-III, and Cu(Mo(0.25)W0.75)O4 were discussed by examining how adjacent AFM ladder chains are coupled via the superexchange paths in the 2D magnetic sheets and how adjacent 2D magnetic sheets are coupled via another superexchange paths along the c-direction. Our study reproduces the experimental finding that the magnetic unit cell is doubled along the a-axis in CuWO(4) and along the c-axis in CuMoO4-III and predicts that the magnetic unit cell should be doubled along the a- and b-axes in Cu(Mo(0.25)W0.75)O4. In the understanding of the strength of a super-superexchange interaction, the importance of the geometrical factors controlling the overlap between the tails of magnetic orbitals was pointed out.  相似文献   

4.
The new compounds Li(2-x)Na(x)Ni[PO(4)]F (x = 0.7, 1, and 2) have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. Li(1.3)Na(0.7)Ni[PO(4)]F crystallizes with the orthorhombic Li(2)Ni[PO(4)]F structure, space group Pnma, a = 10.7874(3), b = 6.2196(5), c = 11.1780(4) ? and Z = 8, LiNaNi[PO(4)]F crystallizes with a monoclinic pseudomerohedrally twinned structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) ?, β = 90° and Z = 4, and Na(2)Ni[PO(4)]F crystallizes with a monoclinic twinned structure, space group P2(1)/c, a = 13.4581(8), b = 5.1991(3), c = 13.6978(16) ?, β = 120.58(1)° and Z = 8. For x = 0.7 and 1, the structures contain NiFO(3) chains made up of edge-sharing NiO(4)F(2) octahedra, whereas for x = 2 the chains are formed of dimer units (face-sharing octahedra) sharing corners. These chains are interlinked by PO(4) tetrahedra forming a 3D framework for x = 0.7 and different Ni[PO(4)]F layers for x = 1 and 2. A sodium/lithium disorder over three atomic positions is observed in Li(1.3)Na(0.7)Ni[PO(4)]F structure, whereas the alkali metal atoms are well ordered in between the layers in the LiNaNi[PO(4)]F and Na(2)Ni[PO(4)]F structures, which makes both compounds of great interest as potential positive electrodes for sodium cells.  相似文献   

5.
Tian C  Lee C  Kan E  Wu F  Whangbo MH 《Inorganic chemistry》2010,49(23):10956-10959
Monoclinic MnSb(2)S(4) consists of MnS(4) chains made up of edge-sharing MnS(6) octahedra and adopts a (0, 0.369, 0) magnetic superstructure below 25 K. This ordered magnetic structure, in which the spins of each MnS(4) chain possess a helical spin arrangement, has C(2)' symmetry. On the basis of density functional theory calculations, we explored the origin of the observed noncollinear spin arrangement of MnSb(2)S(4) by evaluating its spin exchanges to find that spin exchanges are frustrated not only within each MnS(4) chain but also between adjacent MnS(4) chains. Our analysis predicts that MnSb(2)S(4) is a multiferroic with a ferroelectric polarization of ~14 μC/m(2) along the chain direction, and a field-induced reversal of the ferroelectric polarization of MnSb(2)S(4) can occur by reversing the direction of the helical spin rotation in each MnS(4) chain.  相似文献   

6.
We present the synthesis, characterization by DT-TGA and IR, single crystal X-ray nuclear structure at 300 K, nuclear and magnetic structure from neutron powder diffraction on a deuterated sample at 1.4 K, and magnetic properties as a function of temperature and magnetic field of Ni(3)(OH)(2)(SO(4))(2)(H(2)O)(2). The structure is formed of chains, parallel to the c-axis, of edge-sharing Ni(1)O(6) octahedra, connected by the corners of Ni(2)O(6) octahedra to form corrugated sheets along the bc-plane. The sheets are connected to one another by the sulfate groups to form the 3D network. The magnetic properties measured by ac and dc magnetization, isothermal magnetization at 2 K, and heat capacity are characterized by a transition from a paramagnet (C = 3.954 emu K/mol and theta = -31 K) to a canted antiferromagnet at T(N) = 29 K with an estimated canting angle of 0.2-0.3 degrees. Deduced from powder neutron diffraction data, the magnetic structure is modeled by alternate pairs of Ni(1) within a chain having their moments pointing along [010] and [010], respectively. The moments of Ni(2) atoms are oppositely oriented with respect to their adjacent pairs. The resulting structure is that of a compensated arrangement of moments within one layer, comprising one ferromagnetic and three antiferromagnetic superexchange pathways between the nickel atoms.  相似文献   

7.
Exchange mechanisms and magnetic structure in the two-dimensional cyano-bridged molecule-based magnet K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O have been investigated by a combination of neutron diffraction studies on both single crystal and powder samples and theoretical DFT calculations. The experimental spin density has been deduced from a new refinement of previously obtained polarized neutron diffraction (PND) data which was collected in the ordered magnetic state at 4 K under a saturation field of 3 T performed in the C2/c space group, determined by an accurate re-evaluation of the X-ray structure. Positive spin populations were observed on the two manganese sites, and negative spin populations were observed on the molybdenum site, which provides evidence of antiferromagnetic Mo3+-Mn2+ exchange interactions through the cyano bridge. The experimental data have been compared to the results of DFT calculations. Moreover, theoretical studies reveal the predominance of the spin polarization mechanism in the Mo-C-N-Mn sequence, with the antiferromagnetic nature of the interaction being due to the overlap between the magnetic orbitals relative to manganese and molybdenum in the cyano bridging region. The magnetic structure of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O has been solved at low temperature in zero field by powder neutron diffraction measurements. The structure was found to be ferrimagnetic where the manganese and molybdenum spins are aligned along the axis in opposite directions.  相似文献   

8.
The structure of gold cyanide, AuCN, has been determined at 10 and 300 K using total neutron diffraction. The structure consists of infinite [bond]Au[bond](CN)[bond]Au[bond](CN)[bond] linear chains, hexagonally packed, with the gold atoms in sheets. The Au-C and Au-N bond lengths are found to be identical, with d(Au(-C/N) = 1.9703(5) A at 300 K. This work supersedes a previous study, by others, which used Rietveld analysis of neutron Bragg diffraction in isolation, and found these bonds to have significantly different lengths (Delta d = 0.24 A) at 300 K. The total correlation function, T(r), at 10 and 300 K, has been modeled using information derived from total diffraction. The broadening of inter- and intrachain correlations differs markedly due to random displacements of the chains in the direction of the chain axes. This is a consequence of the relatively weak bonding between the chains. An explanation for the negative thermal expansion in the c-direction, which occurs between 10 and 300 K, is presented.  相似文献   

9.
A new family of tetranuclear Ni complexes [Ni(4)(ROH)(4)L(4)] (H(2)L = salicylidene-2-ethanolamine; R = Me (1) or Et (2)) has been synthesized and studied. Complexes 1 and 2 possess a [Ni(4)O(4)] core comprising a distorted cubane arrangement. Magnetic susceptibility and inelastic neutron scattering studies indicate a combination of ferromagnetic and antiferromagnetic pairwise exchange interactions between the four Ni(II) centers, resulting in an S = 4 spin ground state. Magnetization measurements reveal an easy-axis-type magnetic anisotropy with D approximately -0.93 cm(-)(1) for both complexes. Despite the large magnetic anisotropy, no slow relaxation of the magnetization is observed down to 40 mK. To determine the origin of the low-temperature magnetic behavior, the magnetic anisotropy of complex 1 was probed in detail using inelastic neutron scattering and frequency domain magnetic resonance spectroscopy. The spectroscopic studies confirm the easy-axis-type anisotropy and indicate strong transverse interactions. These lead to rapid quantum tunneling of the magnetization, explaining the unexpected absence of slow magnetization relaxation for complex 1.  相似文献   

10.
The synthesis, structure and magnetic properties of the one-dimensional chain compounds [Mn(cyclam)(SO4)]ClO4.H2O (1) and [Mn(cyclam)(HCOO)](CF3SO3)(ClO4) (2) are reported. Cyclam is the cyclic tetradentate ligand 1,4,7,11-tetraazacyclotetradecane. Both chain compounds exhibit antiferromagnetic interactions within the chains. A magnetic ordering phase transition at 5.5 K in (1) is investigated by magnetisation measurements along the three principal crystallographic axes of a single crystal and the results show unambiguously that the ferromagnetic ordering is only taking place along one crystallographic axis. The spin structure of the magnetic ordered phase and the magnitude of the ferromagnetic moment are correlated with the crystal structure and symmetry of the compound.  相似文献   

11.
A novel hydrated fluoroselenate NaCoSeO(4)F·2H(2)O has been synthesized, and its structure determined. Like its sulfate homologue, NaCoSO(4)F·2H(2)O, the structure contains one-dimensional chains of corner-sharing MO(4)F(2) octahedra linked together through F atoms sitting in a trans configuration with respect to each other. The magnetic properties of the two phases have been investigated using powder neutron diffraction and susceptibility measurements which indicate antiferromagnetic ordering along the length of the chains and result in a G-type antiferromagnetic ground state. Both compounds exhibit a Ne?el temperature near 4 K, and undergo a field-induced magnetic phase transition in fields greater than 3 kOe.  相似文献   

12.
The crystal and molecular structure of the layered weak-ferromagnet Fe[CH(3)PO(3)] x H(2)O has been solved by X-ray single-crystal diffraction techniques. Crystal data for Fe[CH(3)PO(3)] x H(2)O are the following: orthorhombic space group Pna2(1); a =17.538(2), b = 4.814(1), c = 5.719(1) A. The structure is lamellar, and it consists of alternating organic and inorganic layers along the a direction of the unit cell. The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. Each phosphonate group coordinates four metal ions, through chelation and bridging, making in this way a cross-linked Fe-O network. The resultant layers are then separated by bilayers of the methyl groups, with van der Waals contacts between them. The compound is air stable, and it dehydrates under inert atmosphere at temperatures above 120 degrees C. The oxidation state of the metal ion is +2, and the electronic configuration is d(6)( )()high spin (S = 2), as determined from dc magnetic susceptibility measurements from 150 K to ambient temperature. Below 100 K, the magnetic moment of Fe[CH(3)PO(3)] x H(2)O rises rapidly to a maximum at T(max) approximately equal to 24 K, and then it decreases again. The onset of peak at T = 25 K is associated with the 3D antiferromagnetic long-range ordering, T(N). The observed critical temperature, T(N), is like all the other previously reported Fe(II) phosphonates, and it appears to be nearly independent of the interlayer spacing in this family of hybrid organic-inorganic layered compounds. Below T(N), the compound behaves as a "weak ferromagnet", and represents the third kind of magnetic materials with a spontaneous magnetization below a finite critical temperature, ferromagnets and ferrimagnets being the other two types.  相似文献   

13.
Cu3(OH)4SO4, obtained by hydrothermal synthesis from copper sulfate and soda in aqueous medium, is isostructural with the corresponding antlerite mineral, orthorhombic, space group Pnma (62), with a=8.289(1) b=6.079(1) and c=12.057(1) Å, V=607.5(2) Å3, Z=4. Its crystalline structure has been refined from X-ray single crystal and powder neutron diffraction data at room temperature. It consists of copper (II) triple chains, running in the b-axis direction and connected to each other by sulfate groups. The magnetic structure, solved from powder neutron diffraction data at 1.4 K below the transition at 5 K evidenced by susceptibility and specific measurements, reveals that, inside a triple chain, the magnetic moments of the copper ions (μB=0.88(5) at 1.4 K) belonging to outer chains are oriented along the c-axis of the nuclear cell, with ferromagnetic order inside a chain and antiferromagnetic order between the two outer chains. No long-range magnetic order is obtained along the central chain with an idle spin behavior.  相似文献   

14.
The synthesis, X-ray crystal structure, and magnetic studies of a rare example of organic/inorganic spin hybrid clusters extended in infinite ladder-type chain [Cu(C5F6HO2)2]7(C35H35N5O4)2 ([Cu(hfac)2]7(pyacbisNN)2, 2) formed by the reaction of a high spin nitronylnitroxide biradical C35H35N5O4 (pyacbisNN, 1) and bis(hexafluroacetylacetonate)copper(II) = Cu(hfac)2 are described. Single-crystal X-ray structure analysis revealed the triclinic P1 space group of 2 with the following parameters: a = 10.6191(4) A, b = 19.6384(7) A, c = 21.941(9) A, alpha = 107.111(7) degrees, beta = 95.107(8) degrees, gamma = 94.208(0) degrees , Z = 2. Each repeating unit in 2 carries a centrosymmetric cyclic six spin and a linear five spin cluster with four different copper coordination environments having octahedral and square planar geometries. These clusters are interconnected to form infinite chains which are running along the crystallographic b axis. The magnetic measurements show nearly paramagnetic behavior with very small variations over a large temperature range. The magnetic properties are thus result of complex competitions of many weak ferro- and antiferromagnetic interactions, which appear as small deviations from quite linear mu(eff) vs T dependence at low temperature. At high temperature (300-14 K), antiferromagnetic behavior dominates a little, while at very low temperature (14-2 K), a small increase of mu(eff) was observed. The magnetic susceptibility data are described by the Curie-Weiss law [chi = C/(T - theta)] with the optimal parameters C = 4.32 +/- 0.01 emuK/mol and theta = - 0.6 +/- 0.3 K, where C is the Curie constant and theta is the Weiss temperature.  相似文献   

15.
Results of neutron powder diffraction and magnetic measurements on single crystals of CsMnI3 are reported. Three-dimensional ordering takes place at Tc = 11.1(3) K. Above Tc very broad peaks occur in the neutron powder diffraction diagram, indicating one-dimensional correlations along the chain. Below Tc the Mn2+ ions are coupled antiferromagnetically along the chain. Interchain exchange leads to a 120° structure, slightly distorted due to anisotropy. One-third of the chains have their magnetic moment parallel to the c axis and the rest of the chains have magnetic moments making an angle of 50(2)° with the c axis. The magnetic moment as found from neutron diffraction extrapolated to 0 K is 3.7(1)μB, indicating a considerable zero-point spin reduction. The intrachain exchange Jk was found to be ?9.1(1)K, whereas the ratio of the inter- to intrachain interaction was determined as J′J = × 10?3. A spin flop occurs at H = 54 kOe on application of a magnetic field parallel to the c axis. When a field perpendicular to the c axis is applied a spin reorientation occurs at 1 kOe.  相似文献   

16.
The homoleptic, square pyramidal organochromium(III) compound [NBu(4)](2)[Cr(C(6)F(5))(5)] (1) reacts with excess organic isocyanides, CNR [R = (t)Bu, 2,6-dimethylphenyl (Xy)], under dissociation of the apical C(6)F(5) ligand to give the more saturated, singly charged complexes [NBu(4)][trans-Cr(C(6)F(5))(4)(CNR)(2)] [R = (t)Bu (2), Xy (3)], containing six monodentate C-donor ligands. These compounds exhibit an axially distorted octahedral structure (single-crystal X-ray diffraction) with the four C(6)F(5) groups defining the equatorial positions and the CNR ligands occupying the axial ones. Compounds 2 and 3 both behave as spin quartet species (S = 3/2) at microscopic level (EPR spectroscopy), their macroscopic magnetic properties depending upon the nature of the terminal R group, as established by magnetisation measurements. When the R substituent is the saturated alkyl group (t)Bu, the compound (2) behaves as a simple paramagnet, with no magnetic interaction between individual Cr(III) centres along the whole temperature range measured (1.8-265 K). By contrast, a weak antiferromagnetic interaction is detected for compound 3 at low temperature with T(N) = 0.19(1) K. Since the closest intermetallic distances are similar in the crystals of 2·CH(2)Cl(2) and 3·1.75CH(2)Cl(2) (ca. 1.1 nm), we conclude that the insaturation of the aromatic Xy group together with the extended intermolecular π-π stacking interactions between Xy rings observed in the crystal lattice of 3·1.75CH(2)Cl(2) (centroid-to-centroid distance: 0.35 nm) favour magnetic interaction between the individual magnetic centres.  相似文献   

17.
The crystal, electronic, and magnetic structures of the cobalt oxyselenide La(2)Co(2)O(3)Se(2) were investigated through powder neutron diffraction measurements and band structure calculations. This oxyselenide crystallizes in a tetragonal layered structure with space group I4/mmm. The Co ion is sixfold-coordinated by two oxide ions and four selenide ions, and the face-sharing CoO(2)Se(4) octahedra form Co(2)OSe(2) layers. The band structure calculations revealed that the Co ion is in the divalent high-spin state. Rietveld analysis of the neutron diffraction profiles below 200 K demonstrated that the Co moments have a noncollinear antiferromagnetic structure with the propagation vector k = (?, ?, 0). The ordered magnetic moment was determined to be 3.5 μ(B) at 10 K, and the directions of the nearest-neighbor Co moments are orthogonal each other in the c plane.  相似文献   

18.
Using dc magnetization, ac susceptibility, specific heat, and neutron diffraction, we have studied the magnetic properties of Mn[N(CN)2]2(pyz) (pyz = pyrazine) in detail. The material crystallizes in the monoclinic space group P2(1)/n with a = 7.3248(2), b = 16.7369(4), and c = 8.7905 (2) A, beta = 89.596 (2) degrees, V = 1077.65(7) A(3), and Z = 4, as determined by Rietveld refinement of neutron powder diffraction data at 1.35 K. The 5 K neutron powder diffraction data reflect very little variation in the crystal structure. Interpenetrating ReO3-like networks are formed from axially elongated Mn(2+) octahedra and edges made up of mu-bonded [N(CN)2](-) anions and neutral pyz ligands. A three-dimensional antiferromagnetic ordering occurs below T(N) = 2.53(2) K. The magnetic unit cell is double the nuclear one along the a- and c-axes, giving the (1/2, 0, 1/2) superstructure. The crystallographic and antiferromagnetic structures are commensurate and consist of collinear Mn(2+) moments, each with a magnitude of 4.15(6) mu(B) aligned parallel to the a-direction (Mn-pyz-Mn chains). Electronic structure calculations indicate that the exchange interaction is much stronger along the Mn-pyz-Mn chain axis than along the Mn-NCNCN-Mn axes by a factor of approximately 40, giving rise to a predominantly one-dimensional magnetic system. Thus, the variable-temperature magnetic susceptibility data are well described by a Heisenberg antiferromagnetic chain model, giving g = 2.01(1) and J/k(B) = -0.27(1) K. Owing to single-ion anisotropy of the Mn(2+) ion, field-induced phenomena ascribed to spin-flop and paramagnetic transitions are observed at 0.43 and 2.83 T, respectively.  相似文献   

19.
The structural and magnetic properties of the tris-dithiooxalato salts, A[M(II)Cr(C(2)S(2)O(2))(3)], have been investigated with A(+) = PPh(4)(+), N(n-C(n)()H(2)(n)()(+1))(4)(+), with n = 3-5, where M(II) is Mn, Fe, Co, and Ni. With the exception of A[MnCr(C(2)S(2)O(2))(3)], all the salts are ferromagnets with Curie temperatures, T(c), between 5 and 16 K. In contrast to the corresponding oxalates which are ferromagnetic, the A[MnCr(C(2)S(2)O(2))(3)] compounds are paramagnetic above 2 K. Powder neutron diffraction studies of d(20)-PPh(4)[FeCr(C(2)S(2)O(2))(3)] indicate that no structural phase transitions occur between 2.4 and 285 K and that the coefficient of linear expansion is four times larger for the c-axis than for the a-axis. The crystal structure refined from powder neutron diffraction data confirms the honeycomb layer arrangement observed in the related bimetallic tris-oxalate salts. The M?ssbauer spectra reveal that the iron(II) in PPh(4)[FeCr(C(2)S(2)O(2))(3)] is coordinated mainly to six oxygen atoms of the dithiooxalato ligand but with a minor component of sulfur coordination that increases with aging of the sample; the iron(II) is high-spin in both cases. Powder neutron diffraction profiles of d(20)-PPh(4)[FeCr(C(2)S(2)O(2))(3)] below T(c) show magnetic intensity with a q = 0 propagation vector, confirming the presence of ferromagnetic order.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号