首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, fast and sensitive liquid chromatography/atmospheric pressure photoionization mass spectrometry (LC/APPI-MS) method, with automated on-line extraction using turbulent flow chromatography (TFC), was developed for the determination of perfluorooctane sulfonate (PFOS) in river water. In this method, following an on-line extraction by injection onto a column under TFC conditions, PFOS is back-flushed onto a reversed-phase column via on-line column switching, and resolved chromatographically at a laminar flow rate of 1 mL min(-1). Using this tandem LC-LC/APPI-MS system the extraction, separation and selective detection of PFOS in river water could be achieved with satisfactory selectivity and sensitivity. The limit of detection (LOD) (S/N = 3) and the limit of quantitation (LOQ) (S/N = 10)were 5.35 and 17.86 pg mL(-1). The described procedure was very simple since no off-line sample preparation was required, total analysis time being 18.75 min.  相似文献   

2.
A high-throughput liquid chromatography/tandem mass spectrometry (LC/MS/MS) method, which combines on-line sample extraction through turbulent flow chromatography with a monolithic column separation, has been developed for direct injection analysis of drugs and metabolites in human plasma samples. By coupling a monolithic column into the system as the analytical column, the method enables running 'dual-column' extraction and chromatography at higher flow rates, thus significantly reducing the time required for the transfer and mixing of extracted fraction onto the separation column as well as the time for gradient separation. A strategy of assessing and reducing the matrix suppression effect on the on-line extraction LC/MS/MS has also been discussed. Experiments for evaluating the resolution, peak shape, sensitivity, speed, and matrix effect were conducted with dextromethorphan and its metabolite dextrorphan as model compounds in human plasma matrix. It was demonstrated that the total run time for this assay with a baseline separation of two analytes is less than 1.5 min.  相似文献   

3.
Restricted access material (RAM) has been used in the packing of a solid-phase extraction (SPE) column for on-line extractions under turbulent flow conditions. The bio-compatible RAM material works by the principle of size exclusion in addition to conventional reversed-phase chromatography, thereby allowing the extraction and preconcentration of small analyte molecules from biological samples such as plasma. Using small column dimensions (0.76 mm x 50 mm) and a consequently high linear velocity, turbulent flow was achieved during online sample extractions. The improved mass-transfer rate characteristic of turbulent flow allows fast sample cleanup without decreased extraction efficiency. The novel use of the RAM column, connected upstream to a C18 monolithic column, allowed the direct injection, extraction, separation, and MS/MS detection of plasma samples spiked with rofecoxib in a span of 5 min. Calibration curves obtained using this RAM turbulent flow coupled column method showed good linearity (R2 > 0.99) and reproducibility (%RSD < or = 7%). The lower limit of quantitation of rofecoxib in plasma samples was found to be 40 ng/ml. The extraction method showed good recovery of rofecoxib from a plasma matrix with minimal signal loss and robustness after more than 200 plasma injections.  相似文献   

4.
A high-throughput bioanalytical method for simultaneous quantitation of pravastatin and its metabolite (M1) in human serum was developed and validated using on-line extraction following liquid chromatography tandem mass spectrometry (LC-MS/MS). The on-line extraction was accomplished by the direct injection of a 50 microL serum sample, mixed 4:1 with an aqueous internal standard solution, into one of the extraction columns with aqueous 1 mm formic acid at flow rate of 3 mL/min. The separation and analysis were achieved by back-eluting the analytes from the extraction column and the analytical column to the mass spectrometer with an isocratic mobile phase consisting of 62% aqueous 1 mm formic acid and 38% acetonitrile at a flow rate of 0.8 mL/min. The second extraction column was being equilibrated while the first column was being used for analysis, and vice versa. The standard curve range was 0.500-100 ng/mL for pravastatin and M1. The lower limit of quantitation, 0.500 ng/mL for all the analytes, was achieved when 50 microL of human serum was used. The intra- and inter-day precisions were within 7.4%, and the accuracy was between 95 and 103%. The on-line extraction was finished in 0.5 min and total analysis time was 2.5 min per sample.  相似文献   

5.
A high-throughput LC-MS/MS method was developed for the simultaneous determination of Risperidone and 9-OH-risperidone in human plasma. A semi-automated sample preparation procedure was applied, including protein precipitation after addition of ACN, via a robotic system, and subsequent sub-zero temperature extraction of the latter. Injections of the ACN extractants were performed on a turbulent flow ternary column-switching system, consisted of dual extraction columns in parallel for on-line purification of samples and an analytical column. Toggling with the assistance of two valves provided a run cycle time of 3 min and the whole procedure minimized carry-over effect. On-line clean-up procedure along with sub-zero temperature extraction increased sample purification and extended column life. The analytical range of the method was 0.1-200 ng mL−1 for both analytes with excellent linearity and very good accuracy and precision. The proposed method was employed in a bioequivalence study after per os administration of a 2 mg tablet of risperidone and allowed the completion of the study (>1400 samples) in only 4 days time.  相似文献   

6.
A new automated method for the quantitative analysis of cyproterone acetate (CPA) in human plasma has been developed using on-line solid phase extraction (SPE) prior to the LC-MS/MS determination. The method was based on the use of a pre-column packed with internal-surface reversed-phase material (LiChrospher RP-4 ADS, 25 mm x 2 mm) for sample clean-up coupled to LC separation on an octadecyl silica stationary phase by means of a column switching system. A 30 microl plasma sample volume was injected directly onto the pre-column using a mixture of water, acetonitrile and formic acid (90:10:0.1 (v/v/v)) adjusted to pH 4.0 with diluted ammonia as washing liquid. The analyte was then eluted in the back-flush mode with the LC mobile phase consisting of water, methanol and formic acid (10:90:0.1 (v/v/v)). The dispensing flow rates of the washing liquid and the LC mobile phase were 300 microl min(-1). Medroxyprogesterone acetate (MPA) was used as internal standard. The MS ionization of the analytes was achieved using electrospray (ESI) in the positive ion mode. The pseudomolecular ionic species of CPA and MPA (417.4 and 387.5) were selected to generate daughter ions at 357.4 and 327.5, respectively. Finally, the developed method was validated according to a new approach using accuracy profiles as a decision tool. Very good results with respect to accuracy, detectability, repeatability, intermediate precision and selectivity were obtained. The LOQ of cyproterone acetate was 300 pg ml(-1).  相似文献   

7.
The use of turbulent flow chromatography in conjunction with column switching isocratic focusing was used to perform on-line sample cleanup and concentration of neat rat plasma for the identification of low-level metabolites. The concentration was achieved by focusing multiple injections, which were cleaned by a turbulent flow column, onto an analytical column prior to elution into the mass spectrometer. In addition, the first application of turbulent flow chromatography for on-line sample cleanup of neat bile samples is reported. The on-line cleanup and concentration method extracts and concentrates a sample 20-fold in 1 h, and is completely automated.  相似文献   

8.
A novel method based on column-switching high-performance liquid chromatography-electrospray mass spectrometry (LC-MS) coupled with an on-line extraction column containing conjugated avidin has been developed for direct injection analysis of di(2-ethylhexyl) phthalate (DEHP) and its metabolite, mono(2-ethylhexyl) phthalate (MEHP), in blood samples. The sample preparation for on-line extraction involved the mixing of blood samples with internal standards, DEHP-d(4) and MEHP-d(4), in LC glass vials. A linear response was found for column-switching LC-MS when tests were conducted within the validated range of 25 to 1000 ng mL(-1) for DEHP and 5 to 1000 ng mL(-1) for MEHP, with correlation coefficients (r) greater than 0.999. In addition, the recoveries of DEHP and MEHP from human plasma were calculated by using this method with on-line extraction, yielding recoveries of up to 91.2% (RSD<5%). We measured the background levels of DEHP and MEHP in six human plasma samples from healthy volunteers and three fetal bovine serum samples for cell-line culture. DEHP and MEHP were not detected in all human plasma samples (N.D. is <25 ng mL(-1) for DEHP, and N.D. is <5.0 ng mL(-1) for MEHP). In contrast, high DEHP contamination of commercially available fetal bovine serum samples was found by this method.  相似文献   

9.
A sensitive and simple liquid chromatography-tandem mass spectrometry method for the determination of midazolam and 1'-hydroxymidazolam in human plasma has been developed and validated with a dynamic range of 0.1-250 ng/mL. The analysis was based on semi-automated liquid-liquid extraction followed by evaporation of the extraction solvent, reconstitution and chromatography on a reversed-phase C(18) column. The mobile phase consists of 5 mm ammonium acetate and methanol and runs in gradient at a flow rate of 0.25 mL/min with column temperature of approximately 20 degrees C. The entire column effluent was transferred into the LC-MS/MS interface operated in positive electrospray ionization mode. The chromatographic run time was 4.3 min per injection, with retention times for midazolam, 1'-hydroxymidazolaml and the internal standard, triazolam, of 2.5, 2.3 and 2.1 min, respectively. The intra-day and inter-day precision (RSD %) and accuracy (bias %) of the quality control samples were <15.0% and within +/-13%, respectively. The current method has been applied to a clinical drug-drug interaction study in human.  相似文献   

10.
A highly sensitive, specific and simple LC-MS/MS method was developed for the simultaneous estimation of dexlansoprazole (DEX) with 50 μL of human plasma using omeprazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under multiple reaction-monitoring mode using electrospray ionization. A simple liquid-liquid extraction process was used to extract DEX and IS from human plasma. The total run time was 2.00 min and the elution of DEX and IS occurred at 1.20 min. This was achieved with a mobile phase consisting of 0.2% ammonia-acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X-terra RP 18 (50 × 4.6 mm, 5 μm) column. The developed method was validated in human plasma with a lower limit of quantitation of 2 ng/mL for DEX. A linear response function was established for the range of concentrations 2.00-2500.0 ng/mL (r > 0.998) for DEX. The intra- and inter-day precision values for DEX met the acceptance criteria as per FDA guidelines. DEX was stable in the battery of stability studies, viz. bench-top, auto-sampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

11.
An automated chiral chromatography/tandem mass spectrometry bioanalytical method for the determination of albuterol in dog plasma was developed. The method employed on-line sample extraction using turbulent flow chromatography coupled to a Chirobiotic T column for chiral separation using a polar organic mobile phase consisting of methanol, 0.02% formic acid, and 0.1% ammonium formate. The analytes were detected by a tandem mass spectrometer operated in positive ion mode. The (S)- and (R)-isomers were resolved chromatographically with retention times of 5.1 and 5.6 min, respectively. The analytical run time was 8 min. The enantiomers did not interconvert either in mobile phase or in dog plasma at room temperature over the course of at least 2 h. The assay has a linear dynamic range from 2.5-2500 nM for both enantiomers. The lower limit of quantitation (LLOQ) was 2.5 nM for both enantiomers using 50 microL of plasma. The accuracy and precision of intraday validation were determined at five concentration levels of six replicates. The accuracy of the method for the (R)-isomer ranged from 94-103% of nominal concentrations, and the precision (%CV) ranged from 3.6-12%. The accuracy of the method for the (S)-isomer ranged from 94.5-108% of nominal concentrations, and the precision ranged from 3.2-9.3%. Interday accuracy and precision were evaluated for three days at five concentrations for one replicate. The accuracy of the method for the (R)-isomer ranged from 98-110% of nominal concentrations, and the precision ranged from 1.5-10.6%. The accuracy of the method for the (S)-isomer ranged from 96-104% of nominal concentrations, and the precision ranged from 1.5-8.7%. The combination of turbulent flow on-line sample extraction with polar organic mode chiral chromatography provided a specific, rugged, and high-throughput method for the chiral analysis of albuterol in biological fluids.  相似文献   

12.
Methylmalonic acid (MMA) is a functional biomarker of vitamin B12 deficiency. Measurement of plasma MMA is challenging due to its small molecular weight and hydrophilic nature. Several liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods have been developed for measuring plasma MMA. However, these methods involve lengthy sample preparation, long chromatographic run time, inadequate sensitivity, or interference from succinic acid (SA). Here we report a novel LC-MS/MS method for quantitation of underivatized MMA in serum or heparinized plasma with high sensitivity and selectivity. Sample preparation involved only strong anion exchange solid phase extraction. The extract was purified by online turbulent flow and analyzed on an Organic Acids column. MS/MS analysis was performed in negative electrospray mode, and the analytical time was 6 min. The use of ion ratio confirmation in combination with chromatographic resolution from SA greatly enhanced the selectivity. No interference was observed. This method was linear from 26.2 to 26,010.0 nM with an accuracy of 98-111 %. Total coefficient of variation was less than 4.6 % for three concentration levels tested. Comparison with a reference laboratory LC-MS/MS method using leftover patient serum specimens (n = 48) showed a mean bias of -2.3 nM (-0.61 %) with a Deming regression slope of 1.016, intercept of -6.6 nM, standard error of estimate of 25.3 nM, and a correlation coefficient of 0.9945. In conclusion, this LC-MS/MS method offers highly sensitive and selective quantitation of MMA in serum and plasma with simple sample preparation.  相似文献   

13.
A technique using a fully automated on-line solid phase extraction (SPE) system (Symbiosis, Spark Holland) combined with liquid chromatography (LC)-mass spectrometry (MS/MS) has been investigated for fast bioanalytical method development, method validation and sample analysis using both conventional C18 and monolithic columns. Online SPE LC-MS/MS methods were developed in the automated mode for the quantification of model compounds (propranolol and diclofenac) directly in rat plasma. Accuracy and precision using online SPE LC-MS/MS with conventional C18 and monolithic columns were in the range of 88-111% and 0.5-14%, respectively. Total analysis cycle time of 4 min per sample was demonstrated using the C18 column. Monolithic column allowed for 2 min total cycle time without compromising the quality and validation criteria of the method. Direct plasma sample injection without on-line SPE resulted in poor accuracy and precision in the range of 41-108% and 3-81%. Furthermore, the increase in back pressure resulted in column damage after the injection of only 60 samples.  相似文献   

14.
A highly reproducible, specific and cost-effective LC-MS/MS method was developed for simultaneous estimation of eszopiclone (ESZ) with 50 μL of human plasma using paroxetine as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode using the electrospray ionization technique. A simple liquid-liquid extraction process was used to extract ESZ and IS from human plasma. The total run time was 1.5 min and the elution of ESZ and IS occurred at 0.90 min; this was achieved with a mobile phase consisting of 0.1% formic acid-methanol (15:85, v/v) at a flow rate of 0.50 mL/min on a Discover C(18) (50 × 4.6 mm, 5 μm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.1 ng/mL for ESZ. A linear response function was established for the range of concentrations 0.10-120 ng/mL (r > 0.998) for ESZ. The intra- and inter-day precision values for ESZ were acceptable as per FDA guidelines. Eszopiclone was stable in the battery of stability studies, viz. bench-top, autosampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

15.
An on-line liquid chromatography/tandem mass spectrometry (LC-MS/MS) procedure, using the Prospekt- 2 system, was developed and used for the determination of the levels of the active ingredients of cough/cold medications in human plasma matrix. The experimental configuration allows direct plasma injection by performing on- line solid phase extraction (SPE) on small cartridge columns prior to elution of the analyte(s) onto the analytical column and subsequent MS/MS detection. The quantitative analysis of three analytes with differing polarities, dextromethorphan (DEX), dextrorphan (DET) and guaifenesin (GG) in human plasma presented a significant challenge. Using stable-isotope-labeled internal standards for each analyte, the Prospekt-2 on-line methodology was evaluated for sensitivity, suppression, accuracy, precision, linearity, analyst time, analysis time, cost, carryover and ease of use. The lower limit of quantitation for the on-line SPE procedure for DEX, DET and GG was 0.05, 0.05 and 5.0 ng mL(-1), respectively, using a 0.1 mL sample volume. The linear range for DEX and DET was 0.05-50 ng mL(-1) and was 5-5,000 ng mL(-1) for GG. Accuracy and precision data for five different levels of QC samples were collected over three separate days. Accuracy ranged from 90% to 112% for all three analytes, while the precision, as measured by the %RSD, ranged from 1.5% to 16.0%  相似文献   

16.
This paper describes the use of multiple-column high-performance liquid chromatography (HPLC) combined with laser-induced fluorescence for the determination of femtomole/milliliter concentrations of enprostil acid, a prostaglandin analogue, in human plasma. The drug is isolated from plasma by phenyl solid-phase extraction and fluorescently labeled at its carboxyl functional group with a large excess of 2-bromoacetyl-6-methoxynaphthalene. A multi-column method using both normal- and reversed-phase chromatography is necessary to separate the labeled drug from the unreacted reagent. Post-column dilution of the mobile phase with water after the reversed-phase chromatography allows on-line concentration of the labeled analyte onto a guard column prior to the microbore HPLC. A loop guard column device provides a simple way to inject up to 1.0 ml of sample solution onto a microbore column without significantly reducing the column efficiency. A 325-nm He-Cd laser is used to excite the labeled drug, and fluorescence emission is monitored at 450 nm. Using this system, we are able to derivatize, detect, and quantify 5 pg of the prostaglandin analogue in 1.0 ml of plasma.  相似文献   

17.
Abstract

A simple and sensitive high-performance liquid chromatographic method for quantitation of clopamide in human plasma has been developed. the assay uses a reversed-phase C18 microbore column (2 mm I.D. × 100 mm) packed with 5 μm ODS Hypersil. the chromatographic separation was achieved by using an isocratic mobile phase comprising acetonitrile-10 mM phosphate buffer pH 4 (17:83, v/v) at a flow rate of 0.5 ml/min. the eluant was monitored by a UV detector operating at 241 nm. the assay was based on an organic extraction before chromatographic separation. to 1 ml plasma sample, 100 μl of the internal standard, methylparaben (300 ng/ml), and 8 ml of diethyl ether were added. the samples were shaken and centrifuged, the organic layer was then transferred to a tapered centrifuge tube and evaporated to dryness. the residue was reconstituted and injected onto the HPLC column. the inter-and intra-assay coefficients of variation were found to be less than 10%. the lowest limit of detection for clopamide in plasma was 5 ng/ml. the method is sensitive, specific and allows for routine analysis in the pharmacokinetic studies.  相似文献   

18.
A sensitive, simple, fast and rugged hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for the determination of paroxetine was developed and validated over curve range 0.050-50 ng/mL using only 0.4 mL plasma. This is the first published LC-MS/MS method and the low limit of quantitation of this method is 10-fold lower than previously published methods. A simple liquid-liquid extraction method using methyl-tert butyl ether (MTBE) as the extraction solvent was used to extract paroxetine and the internal standard (IS) fentanyl-d(5) from plasma. The extract was evaporated to dryness, reconstituted and injected onto a silica column using a low aqueous-high organic mobile phase. The chromatographic run time was 2.0 min per injection, with retention times of 1.1 and 1.2 min for paroxetine and IS, respectively. The detection was by monitoring paroxetine at m/z 330 --> 192 and IS at m/z 342 --> 188, respectively. The inter-day precision and accuracy of the quality control (QC) samples were <5.0% relative standard deviation (RSD) and <2.9% relative error (RE). This method can be used for supporting therapeutical drug monitoring and pharmacokinetic or drug-drug interaction studies.  相似文献   

19.
A simple, automated and rapid method has been developed for the determination of a novel antiviral peptide sifuvirtide in monkey plasma. Raw plasma samples were directly loaded onto an on-line solid-phase extraction (SPE) column, which removes the time-consuming and laborious sample pretreatment. Following a timed valve-switching event, the analyte was eluted on-line to a reversed-phase high-performance liquid chromatography (RP-HPLC) column and subsequently introduced into a linear ion trap mass spectrometer, LTQ-MS, via an electrospray ionization (ESI) interface. The multiply charged peptides were specified and quantitatively analyzed using selective reaction monitoring (SRM). A highly pure four iodine-sifuvirtide was synthesized using an optimized iodogen method and proved to be a suitable internal standard (IS). A single analysis run takes about 18 min. Validation of the method demonstrated that the linear calibration curves covered the range of 4.88-5000 ng/mL, and the correlation coefficients were above 0.9923. The limit of detection (LOD) with the signal-to-noise (S/N) ratio higher than 12 was calculated as 1.22 ng/mL. The intra- and inter-batch precisions were less than 12.7% and 9.1%, and the mean accuracy ranged from -5.2% to 3.6%, respectively. Any carry-over effect from the system was negligible. In a pharmacokinetic (PK) study of sifuvirtide after a single intravenous or subcutaneous dose in monkeys, the on-line SPE-LC/MS/MS system was successfully utilized to determine hundreds of samples with only one extraction column, which indicated the feasibility and the reliability of this method for application in preclinical and clinical PK studies of peptide drugs.  相似文献   

20.
In this paper, the on-line coupling of solid-phase extraction, based on a restricted-access support with high-performance reverse phase chromatography for the analysis of carbamazepine (CBZ) and carbamazepine-10,11-epoxide (CBZ-E) in human plasma samples is described. A precolumn packed with 25 mum C(18) alkyl-diol support is used for direct plasma injection. Using column-switching techniques, the analytes were enriched on the precolumn by a 5 mM phosphate buffer (pH 7) with 2% of methanol solution at a flow-rate of 0.8 ml min(-1), while proteins and endogenous hydrophilic substances in plasma were washed off to waste. The enriched analytes were then back-flushed onto the analytical C(18) column, separated by a mixture of 10 mM phosphate buffer (pH 7) acetonitrile (70:30 v/v) solution at a flow-rate of 1.0 ml min(-1) and detected by the ultraviolet absorbance set at 212 and 285 nm and without transfer loss. Linear calibration graphs were obtained for sample injection volumes of 50 (0.2-4.0 of mug of CBZ ml(-1) and 0.1-5.0 mug of CBZ-E ml(-1), respectively), and 20 mul (5.0-20.0 mug of CBZ ml(-1)); in either case the r-value was >0.9963. Recoveries from spiked plasma samples were quantitative for both analytes and the coefficients of variation were below 3.83%. The lowest samples concentrations that can be quantified with acceptable accuracy and precision was 0.2 mug CBZ ml(-1) and 0.1 mug CBZ-E ml(-1) when a sample volume of 50 mul was injected. Concentrations of 0.08 and 0.05 mug ml(-1) of CBZ and CBZ-E were considered the limit of detection for a signal-to-noise ratio of 3. Furthermore, the developed column-switching method was successfully applied to the determination of CBZ and CBZ-E in plasma samples of patients submitted to CBZ therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号