首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several intramolecular junctions (IMJs) connecting two semiconductor single-wall carbon nanotubes (SWNTs) have been realized by using the layer-divided technique and introducing the pentagon-heptagon topological defects. The atomic structure of each IMJ is optimized with a combination of density-functional theory (DFT) and the universal force field (UFF) method, based upon which a -orbital tight-binding calculation is performed on its electronic properties. Obtained results indicate that different topological defects and their distributions on the interfaces of the IMJs have decisive effects on the electronic properties of the IMJs. The specific geometrical defects control the localized defect states chiefly, while the diameters of the SWNTs on both sides are also related to them. The influence on the experimental observation brought by the choice of the scanning line is also presented by comparing the scanning results performed on the defect side with those on the defect-free side. A new IMJ structure has been found, and it probably reflects the real atomic structures of the semiconductor-semiconductor (S-S) IMJ [Phys. Rev. Lett. 90, 216107 (2003)].Received: 29 November 2003, Published online: 9 April 2004PACS: 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 73.20.At Surface states, band structure, electron density of states - 73.40.Lq Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions  相似文献   

2.
Confocal Raman spectral imaging results are presented for a metal-to-semiconductor intramolecular junction (IMJ) on an isolated carbon nanotube. Spectra observed at the junction are consistent with the symmetry lowering expected from the occurrence of pentagon-heptagon defects to produce the chirality shift. The IMJ transition zone is sharp and preserves the nanotube diameter. These results have significant implications for the future use of IMJs as electronic devices, including how prevalent these structures are and how their growth may be rationally targeted. Raman imaging has been demonstrated to be a powerful tool for IMJ studies and provides a more accessible method for further studies of IMJ structure and growth.  相似文献   

3.
Jiaqian Li 《Molecular physics》2013,111(7):753-763
The dispersion of longitudinal and transverse waves in (n,0)–(2n,0) intramolecular junctions (IMJs) are investigated using an atomistic finite element method (FEM). The transient responses of IMJs with different connection types subjected to harmonic incident wave were modelled using three-dimensional elastic beams of carbon bonds and point masses. The linkage between the force-field constants of molecular mechanics and input parameters of beam and mass elements was established through the molecular structural mechanics approach. The wave dispersion simulated by FEM shows good agreement with that of the non-local elastic model in a wide frequency range up to the terahertz region. It is shown that both the microstructure of conical part (connection part) and the coupling of longitudinal vibration and transverse vibration brought by the conicity play important roles in the dispersion of longitudinal and transverse wave in a single-walled IMJ. The amplitude decay of longitudinal wave depended on the distance propagating; the wavelength and the structure in connection part are examined. The results show that the dispersion of the decay of the wave amplitude in IMJ with less pentagon–heptagon defects has a better agreement with analytical results of macroscopic conical shell.  相似文献   

4.
Zhang H  Zhang SY  Wang TH 《Ultrasonics》2007,47(1-4):82-89
Based on Timoshenko beam model, a theoretical model of radially polarized piezoelectric ceramic tubes is investigated. In the model, the piezoelectric effects are considered, and the shear correction factor is introduced which reveals effects of the size of the cross-section and Poisson’s ratio. Based on the model, the particular attentions are devoted to effects of the boundary conditions at two ends on flexural resonance frequencies of the piezoelectric ceramic tubes. Changing the sizes of the tubes and the mass loads at both free ends, the variations of the flexural resonance frequencies of free–free piezoelectric ceramic tubes are calculated theoretically. Besides, the flexural resonance frequencies of the piezoelectric ceramic tube cantilevers with mass loads at one free end are also investigated theoretically. To verify accuracy of the theoretical mode, the flexural resonance frequencies for different lengths of the piezoelectric ceramic tubes and different loaded masses are measured experimentally. The theoretical results agree well with the experimental measurement, which demonstrates that the model is accurate for analyzing the flexural resonance frequencies of the piezoelectric ceramic tubes with mass loads.  相似文献   

5.
We have measured the Raman spectrum of individual single walled carbon nanotubes in solution and compare it to that obtained from the same starting material where the tubes are present in ordered bundles or ropes. Interestingly, the radial mode frequencies for the tubes in solution are found to be approximately 10 cm (-1) higher than those observed for tubes in a rope, in apparent contradiction to lattice dynamics predictions. We suggest that there is no such contradiction, and propose that the upshift is due rather to a decreased energy spacing of the Van Hove singularities in isolated tubes over the spacings in a rope, thereby allowing the same laser excitation to excite different diameter tubes in these two samples.  相似文献   

6.
This paper presents the results of two experimental investigations of a pair of circular tubes subjected to liquid cross flow: (1) two tubes in a plane normal to the flow stream; and (2) two tubes in tandem. Tube response characteristics, including natural frequencies, damping, displacements and vibration orbits, are measured and reported. Results of this study provide additional insight into the interaction of pairs of tubes in liquid flow, including such phenomena as flow velocity-dependent damping and the frequency “lock-in” region of tube motion in the drag direction.  相似文献   

7.
This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes (SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were idealized by a uniform form of this function. The newly introduced function enables us to investigate the influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these integro-partial differential equations is a very problematic task. Thereby, an energy-based method in conjunction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically embedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of the proposed model are checked with those of assumed mode method, and a reasonably good agreement is achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better realizing of a more complex system that consists of vertically aligned SWCNTs of various lengths.  相似文献   

8.
In this paper, exact formulas are obtained for the radial breathing mode (RBM) frequencies of triple-walled carbon nanotubes (TWCNTs) using symbolic package in MAPLE software. For this purpose, TWCNT is considered as triple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard–Jones potential is used to calculate the vdW forces between adjacent tubes. Then, explicit formulas for RBM frequencies of single-walled (SW), and double-walled (DW) CNTs have been deduced from TWCNT formulas that show an excellent agreement with the available experimental results and the other theoretical model results. The advantage of this analytical approach is that the elastic shell model considers all degrees of freedom in the vibrational analysis of CNTs. To demonstrate the accuracy of this work, the RBM frequencies of different multi-walled carbon nanotubes (MWCNTs) are compared with the available experimental or atomistic results with relative errors of less than 1.5%. To illustrate the application of this approach, the diameters of DWCNTs are obtained from their RBM frequencies which show an excellent agreement with the available experimental results. Also, this approach can be used to determine the diameters of the TWCNTs and MWCNTs. The influence of changing the geometrical and mechanical parameters of a TWCNT on its RBM frequencies has been investigated, too.  相似文献   

9.
A radial cascaded composite ultrasonic transducer is analyzed.The transducer consists of three short metal tubes and two radially polarized piezoelectric ceramic short tubes arranged alternately along the radial direction.The short metal tubes and the piezoelectric ceramic short tubes are connected in parallel electrically and in series mechanically,which can multiply the input sound power and sound intensity.Based on the theory of plane stress,the electro-mechanical equivalent circuit of radial vibration of the transducer is derived firstly.The resonance/anti-resonance frequency equation and the expression of the effective electromechanical coupling coefficient are obtained.Excellent electromechanical characteristics are determined by changing the radial geometric dimensions.Two prototypes of the transducers are designed and manufactured to support the analytical theory.It is concluded that the theoretical resonance/anti-resonance frequencies are consistent with the numerical and experimental results.When R_2 is at certain values,both the anti-resonance frequency and effective electromechanical coupling coefficient corresponding to the second mode have maximal values.The radial cascaded composite ultrasonic transducer is expected to be used in the fields of ultrasonic water treatment and underwater acoustics.  相似文献   

10.
A new method is used for studying the mode competition of HeNe lasers. The method used is: (i) to make a small frequency split by using laser longitudinal mode split technology, (ii) to tune the cavity length in order to move the two mode split frequencies along the frequency axis and (iii) to use different ration between 20Ne and 22Ne in the laser tubes. In some ranges of lasing bandwidth, one mode split frequency will extinguish due to mode competition. And in other ranges, two mode split frequencies will work altogether. At the boundary between these two ranges, the process of intensity variation, from zero to maximum or in the opposite direction, of the split frequencies can be seen clearly. The pattern is dependent on the ration between 20Ne and 22Ne.  相似文献   

11.
The quartic force field of pyrazine has been calculated in the B3LYP/6-31G(d) hybrid density-functional approximation. Based on the results of this calculation, the total IR (250–3800 cm–1) and Raman (400–3200 cm–1) spectra of pyrazine have been interpreted with consideration for the Fermi and Darling-Dennison resonances and their spectral manifestations. A precision method is proposed for anharmonic analysis of the vibrational states of polyatomic molecules on the basis of consideration of their theoretical anharmonicity constants in combination with the corresponding experimental frequencies. The method of linear scaling of frequencies has been theoretically substantiated.__________Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 1, pp. 13–22, January–February, 2005.  相似文献   

12.
张辉  张淑仪  范理 《中国物理 B》2012,21(8):83302-083302
Flexural resonance vibrations of piezoelectric ceramic tubes in Besocke-style scanners with nanometer resolution are studied by using an electro-mechanical coupling Timoshenko beam model.Meanwhile,the effects of friction,the first moment,and moment of inertia induced by mass loads are considered.The predicted resonance frequencies of the ceramic tubes are sensitive to not only the mechanical parameters of the scanners,but also the friction acting on the attached shaking ball and corresponding bending moment on the tubes.The theoretical results are in excellent agreement with the related experimental measurements.This model and corresponding results are applicable for optimizing the structures and performances of the scanners.  相似文献   

13.
The authors developed a fast simultaneous method in detecting multi-gases using quantum cascade laser (QCL) based photoacoustic (PA) spectroscopy. We demonstrated the simultaneous measurement of CO and SO2 concentrations using two QCLs working at 4.56 and 7.38 μm, corresponding to the absorption bands of CO and SO2, respectively. The modulation frequencies of the two QCLs were 234 and 244 Hz. The response time was 0.6 seconds. A computer sound card was used to process the PA signals. Fast Fourier transform was an essential step to get the amplitudes of the PA signals at different frequencies. The concentration of each gas can be obtained from the PA signal amplitude at the corresponding modulation frequency.  相似文献   

14.
These spectra are for liquid-nitrogen temperature, the solvents being n-pentane, n-hexane, n-heptane, and n-octane. Each has a vibrational structure, the vibrational frequencies being independent of the solvent. Acenaphthene in pentane and octane gives 12 peaks corresponding to vibrational frequencies of 414, 630, 1152, 1409, and 1604 cm–1, the last two being the strongest. Diphenyl in pentane and heptane gives gives 21 peaks; the strongest vibrations are 1610 and 1275 cm–1, others being 1003, 320, and 735 cm–1. Carbazole in pentane and hexane gives 15 peaks that fit the frequencies 750, 852, 1141, 1305, 1477, and 1605 cm–1, the first and last being the strongest.  相似文献   

15.
Real-time electronic speckle pattern interferometry (ESPI) was used for tuning and visualization of natural frequencies of a trapezoidal plate. The plate was excited to resonant vibration by a sinusoidal acoustical source, which provided a continuous range of audio frequencies. Fringe patterns produced during the time-average recording of the vibrating plate—corresponding to several resonant frequencies—were registered. From these interferograms, calculations of vibrational amplitudes by means of zero-order Bessel functions were performed in some particular cases. The system was also studied analytically. The analytical approach developed is based on the Rayleigh–Ritz method and on the use of non-orthogonal right triangular co-ordinates. The deflection of the plate is approximated by a set of beam characteristic orthogonal polynomials generated by using the Gram–Schmidt procedure. A high degree of correlation between computational analysis and experimental results was observed.  相似文献   

16.
We have carried out saturation spectroscopy of cyclotron resonance in a semiconducting InAs/Al0.5Ga0.5Sb single quantum well using the UCSB free electron laser and have extracted an effective Landau level lifetime using an n-level rate equation model. The effective lifetime shows strong oscillations (>an order of magnitude) with frequency. Minima are shifted to higher frequencies than those given by the simple parabolic magnetophonon resonance condition due to large nonparabolicity in the InAs conduction band. We have also used this technique to investigate the origins of two lines: the X-line and cyclotron resonance in a “semimetallic” InAs/Al0.1Ga0.9Sb single quantum-well structure. Results show that the two lines are of different origin.  相似文献   

17.
Analysis and numerical results are presented for the axisymmetric vibrations of polar orthotropic annular plates with linear variation in thickness, according to Mindlin's shear theory of plates. A chebyshev collocation technique has been employed to obtain the frequency equations for the transverse motion of such plates, for three different boundary conditions. Frequencies, mode shapes and moments for the first three modes of vibration have been computed for different plate parameters. A comparison of frequencies with the corresponding values obtained by classical plate theory leads to some interesting conclusions.  相似文献   

18.
We have investigated the luminescence of uranyl nitrate molecules on the surface of powdery SiO2 upon excitation by UV light (PhL) and hydrogen atoms (radical-recombination luminescence (RRL)). It has been found that the PhL and RRL spectra have a clearly defined vibrational structure. The luminescence peaks of the adsorbed UO2 2– ion are characterized by a systematic longwave shift from the same peaks of crystalline uranyl nitrate (by 230–430 cm–1 at 130 K). Moreover, in the adsorption centers the vibration frequencies of UO2 2– are 20–80 cm smaller than in crystalline salt and the RRL bands are 150–350 cm–1 (130 K) wider than the corresponding PhL bands.  相似文献   

19.
The radial dependency of the vibrational frequencies of single-wall carbon nanotubes in the G band (1500-1600 cm(-1)) is studied by density functional theory. In metallic nanotubes, a mode with A1 symmetry is found to be significantly softer than the corresponding mode in insulating tubes or graphite. The mechanism that leads to the mode softening is explored. It is reminiscent of the driving force inducing Peierls distortions. At ambient temperature, the energy gained by opening the gap is, however, not sufficient for a static lattice distortion. Instead the corresponding vibrational frequency is lowered.  相似文献   

20.
On the basis of the electronic absorption spectra of Sm3+ ions in aqueous solutions of hydrochloric and perchloric acids (1M) calibration plots of samarium content against the optical density of the solutions have been constructed for frequencies 47,800, 31,460, 29,140, 27,760, 26,740, 24,940, 24,020, 21,580, and 20,900 cm–1 corresponding to the optical density maxima. The results of the calculation of errors in determining the metal concentration are presented. It has been shown that for hydrochloric acid solutions of samarium correct determination of its content is possible at frequencies 24,940, 21,580, and 20,900 cm–1 in the concentration ranges 1.0–3.5, 2.5–5.0, and 0.08–5.00%, respectively. For perchloric acid solutions of samarium, correct determination of its content is possible at the 24,940 cm–1 frequency in the concentration range from 1.0 to 3.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号