首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanophase Fe3O4 and Fe2O3 were synthesized through a precipitation method and were utilized for the removal of either arsenic (III) or (V) from aqueous solution as a possible method for drinking water treatment. The synthesized nanoparticles were characterized using X-ray diffraction, which showed that the Fe3O4 and the Fe2O3 nanoparticles had crystal structures of magnetite and hematite, respectively. In addition, Secherrer's equation was used to determine that the grain size nanoparticles were 12 ± 1.0 nm and 17 ± 0.5 nm for the Fe2O3 and Fe3O4, respectively. Under a 1 h contact time, batch pH experiments were performed to determine the optimum pH for binding using 300 ppb of either As(III) or (V) and 10 mg of either Fe3O4 or Fe2O3. The binding was observed to be pH independent from pH 6 through pH 9 and a significant drop in the binding was observed at pH 10. Furthermore, batch isotherm studies were performed using the Fe2O3 and Fe3O4 to determine the binding capacity of As(III) and As(V) to the iron oxide nanomaterials. The binding was found to follow the Langmuir isotherm and the capacities (mg/kg) of 1250 (Fe2O3) and 8196 (Fe3O4) for As(III) as well as 20,000 (Fe2O3) and 5680 (Fe3O4) for As(III), at 1 and 24 h of contact time, respectively. The As(V) capacities were determined to be 4600 (Fe2O3), 6711(Fe3O4), 4904 (Fe2O3), and 4780 (Fe3O4) mg/kg for nanomaterials at contact times of 1 and 24 h respectively.  相似文献   

2.
The crystal structure of K2Cu3(As2O6)2 was determined from single-crystal X-ray data by a direct method strategy and Fourier summations [a = 10.359(4) Å, B = 5.388(2)Å, C = 11.234(4) Å, β = 110.48(2)°; space group C2/m; Z = 2; Rw = 0.025 for 1199 reflections up to sin /λ = 0.81 Å−1]. In detail, the structure consists of As(V)O4 tetrahedra and As(III)O3 pyramids linked by a common O corner atom to [As(V)As(III)O6]4− groups with symmetry m. The bridging bonds As(V)---O [1.749(3) Å] and As(III)---O [1.838(2) Å] are definitely longer than the other As(V)---O bonds [mean 1.669 Å] and As(III)---O bonds [1.764(2) Å, 2×]. The angle As(V)---O---As(III) is 123.0(1)°. The Cu atoms are [4 + 2]- and [4 + 1]-, and the K atom is [9]-coordinated to oxygen atoms. The As2O6 groups and the Cu coordination polyhedra are linked to sheets parallel to (001). These sheets are connected by the K atoms. Single crystals of K2Cu3(As2O6)2 suitable for X-ray work were synthesized under hydrothermal conditions.  相似文献   

3.
Worldwide, arsenic contamination has become a matter of extreme importance owing to its potential toxic, carcinogenic and mutagenic impact on human health and the environment. The magnetite-loaded biochar has received increasing attention for the removal of arsenic (As) in contaminated water and soil. The present study reports a facile synthesis, characterization and adsorption characteristics of a novel magnetite impregnated nitrogen-doped hybrid biochar (N/Fe3O4@BC) for efficient arsenate, As(V) and arsenite, As(III) removal from aqueous environment. The as-synthesized material (N/Fe3O4@BC) characterization via XRD, BET, FTIR, SEM/EDS clearly revealed magnetite (Fe3O4) impregnation onto biochar matrix. Furthermore, the adsorbent (N/Fe3O4@BC) selectivity results showed that such a combination plays an important role in targeted molecule removal from aqueous environments and compensates for the reduced surface area. The maximum monolayer adsorption (Qmax) of developed adsorbent (N/Fe3O4@BC) (18.15 mg/g and 9.87 mg/g) was significantly higher than that of pristine biochar (BC) (9.89 & 8.12 mg/g) and magnetite nano-particles (MNPs) [7.38 & 8.56 mg/g] for both As(III) and As(V), respectively. Isotherm and kinetic data were well fitted by Langmuir (R2 = 0.993) and Pseudo first order model (R2 = 0.992) thereby indicating physico-chemical sorption as a rate-limiting step. The co-anions (PO43-) effect was more significant for both As(III) and As (V) removal owing to similar outer electronic structure. Mechanistic insights (pH and FTIR spectra) further demonstrated the remarkable contribution of surface groups (OH, –NH2 and –COOH), electrostatic attraction (via H- bonds), surface complexation and ion exchange followed by external mass transfer diffusion and As(III) oxidation into As(V) by (N/Fe3O4@BC) reactive oxygen species. Moreover, successful desorption was achieved at varying rates up to 7th regeneration cycle thereby showing (N/Fe3O4@BC) potential practical application. Thus, this work provides a novel insight for the fabrication of novel magnetic biochar for As removal from contaminated water in natural, engineering and environmental settings.  相似文献   

4.
Mn/Fe mixed oxide solids doped with Al2O3 (0.32-1.27 wt.%) were prepared by impregnation of manganese nitrate with finely powdered ferric oxide, then treated with different amounts of aluminum nitrate. The obtained samples were calcined in air at 700-1000 °C for 6 h. The specific surface area (SBET) and the catalytic activity of pure and doped precalcined at 700-1000 °C have been measured by using N2 adsorption isotherms and CO oxidation by O2. The structure and the phase changes were characterized by DTA and XRD techniques. The obtained results revealed that Mn2O3 interacted readily with Fe2O3 to produce well-crystallized manganese ferrite (MnFe2O4) at temperatures of 800 °C and above. The degree of propagation of this reaction increased by Al2O3-doping and also by increasing the heating temperature. The treatment with 1.27 wt.% Al2O3 followed by heating at 1000 °C resulted in complete conversion of Mn/Fe oxides into the corresponding ferrite phase. The catalytic activity and SBET of pure and doped solids were found to decrease, by increasing both the calcination temperature and the amount of Al2O3 added, due to the enhanced formation of MnFe2O4 phase which is less reactive than the free oxides (Mn2O3 and Fe2O3). The activation energy of formation (ΔE) of MnFe2O4 was determined for pure and doped solids. The promotion effect of aluminum in formation of MnFe2O4 was attributed to an effective increase in the mobility of reacting cations.  相似文献   

5.
Three mixed-metal single-molecule magnets containing [Mn8Fe4O12]16+ cores are synthesized and characterized. The reaction of FeCl2·4H2O with KMnO4 and RCOOH (R = CH2Cl, CH2Br) in H2O gives [Mn8Fe4O12(O2CR)16(H2O)4] (R = CH2Cl (1), CH2Br (2)) in yields of 43% and 40%, respectively. Treatment of complex 1 with an excess of CHCl2COOH in CH2Cl2 gives [Mn8Fe4O12(O2CCHCl2)16(H2O)4]·CH2Cl2·10H2O (3·CH2Cl2·10H2O) in a yield of 83%. The X-ray structure analysis reveals that all three complexes consist of a trapped-valence dodecanuclear core comprising 4MnIII, 4FeIII, and 4MnIV ions. DC magnetic susceptibility and magnetization measurements indicate that all three complexes exhibit intramolecular antiferromagnetic interaction, resulting in an S = 4 ground state. In addition, frequency-dependent out-of-phase AC magnetic susceptibility signals at low temperature for complexes 1, 2, and 3 are indicative of their single-molecule magnetism behavior.  相似文献   

6.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

7.
The Mn7(HOXO3)4(XO4)2 (X=As, P) compounds have been synthesized by using hydrothermal conditions. The arsenate phase was obtained under autogeneous pressure at 170°C. However, more drastic conditions at both pressure and temperature were necessary in the attainment of the phosphate compound. The crystal structure of Mn7(HOAsO3)4(AsO4)2 was solved using single-crystal data. The unit-cell parameters are a=6.810(3) Å, b=8.239(2) Å, c=10.011(4) Å, α=104.31(2)°, β=108.94(3)°, γ=101.25(2)°. Triclinic, P-1 with Z=1. The isostructural Mn7(HOPO3)4(PO4)2 phase was characterized from X-ray powder diffraction techniques. The crystal structure of both compounds consists of zig-zag chains constructed by dimeric edge-sharing Mn2O10 octahedra linked through the MnO5 trigonal bipyramids. The three-dimensional framework is completed by the connection between isolated MnO6 entities to the dimers octahedra and trigonal bipyramids. The existence of hydrogenarsenate and hydrogenphosphate anions has been confirmed by IR and Raman spectroscopies. Magnetic measurements indicate the existence of antiferromagnetic interactions in both compounds, which are slightly stronger in the arsenate phase.  相似文献   

8.
Manganites NdM3Sr3Mn4O12 and NdM3Ba3Mn4O12 (M = Li, Na, K) were synthesized by a ceramic method from the corresponding oxides and carbonates. The X-ray diffraction analysis showed that all the compounds crystallized in the tetragonal crystal system with the following lattice parameters: NdLi3Sr3Mn4O12: a = 10.88 ?, c = 9.52 ?, V o = 1126.9 ?3, Z = 4, ρX = 4.95 g/cm3, ρpycn = 4.87 ± 0.05 g/cm3; NdNa3Sr3Mn4O12: a = 10.73 ?, c = 10.66 ?, V o = 1227.3 ?3, Z = 4, ρX = 4.80 g/cm3, ρpycn = 4.73 ± 0.07 g/cm3; NdK3Sr3Mn4O12: a = 10.87 ?, c = 11.71 ?, V o = 1382.6 ?3, Z = 4, ρX = 4.50 g/cm3, ρpycn = 4.43 ± 0.09 g/cm3; NdLi3Ba3Mn4O12: a = 10.97 ?, c = 10.34 ?, V o = 1244.3 ?3, Z = 4, ρX = 5.33 g/cm3, ρpycn = 5.23 ± 0.09 g/cm3; NdNa3Ba3Mn4O12: a = 10.99 ?, c = 11.15 ?, V o = 1346.7 ?3, Z = 4; ρX = 5.11 g/cm3, ρpycn = 5.05 ± 0.06 g/cm3; NdK3Ba3Mn4O12: a = 10.997 ?; c = 13.80 ?, V o = 1668.9 ?3, Z = 4, ρX = 4.32 g/cm3, ρpycn = 4.26 ± 0.07 g/cm3. Original Russian Text ? B.K. Kasenov, E.S. Mustafin, M.A. Akubaeva, S.T. Edil’baeva, Sh.B. Kasenova, Zh.I. Sagintaeva, S.Zh. Davrenbekov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 424–427.  相似文献   

9.
In this study, the superparamagnetic attapulgite/Fe3O4/polyaniline (ATP/Fe3O4/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe3O4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe3O4/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe3O4/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe3O4/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r2) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L−1, and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe3O4/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs.  相似文献   

10.
By using Mn2+ and Mn3+ salts, and freshly extracted ovalbumin, Mn3O4 nanocrystals have been synthesized successfully. The X-ray diffraction results indicated that the synthesized nanoparticles have only the spinel structure without the presence of any other phase impurities. As the ovalbumin–water mixture was highly basic, the process did not require any use of base to increase the pH where hydrolysis took place. A gel formed where water soluble ovalbumin proteins served as a perfect matrix for entrapment of metal ions (Mn2+ and Mn3+). Upon heat treatment, the dried gel precursor decomposed into nanocrystalline Mn3O4. The discrepancy between the crystallite size from XRD and particle size SEM analysis reveals polycrystalline nature of the synthesized particles with this route. EPR analysis of Mn3O4 shows a narrow and symmetric line indicating the absence of hyperfine splitting.  相似文献   

11.
Fe3O4 powders, whose average particle sizes were 400 nm, 100 nm, and 10 nm in diameter, were prepared in order to investigate the effect of particle size on their electrochemical activity. X-ray diffraction and electron microscopy measurements confirmed that all the prepared samples were identified as inverse-spinel type Fe3O4, whose crystallite/particle sizes were between 400 nm and 10 nm. We found that the electrochemical activity of Fe3O4 in a lithium salt electrolyte was enhanced with a decrease in the particle size from 400 nm to 10 nm. The 10 nm nanocrystalline Fe3O4 powder demonstrated the high discharge capacities of about 130 and 160 mAh g−1 with a satisfactory capacity retention as the active cathode material of Li and Na batteries, respectively.  相似文献   

12.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

13.
Novel magnetic Fe3O4/polyphosphazene nanofibers were successfully prepared via a facile approach by ultrasonic irradiation. The structure and morphology were characterized by SEM, TEM, EDX, IR and XRD. The characterization results show that the magnetic Fe3O4/polyphosphazene nanofibers are several microns in length and 50–100 nm in diameter with Fe3O4 nanoparticles of 5–10 nm attached on the surface. The interaction between Fe3O4 nanoparticles and polyphosphazene nanofibers was thought as coordination behavior. TG curves show that the magnetic Fe3O4/polyphosphazene nanofibers have good thermostability and high magnetism content of about 44%. Magnetic studies show that the magnetic nanofibers exhibit good superparamagnetic properties with high magnetization saturation value of about 36 emu/g.  相似文献   

14.
基于尖晶石晶体结构信息,本文采用热力学三亚晶格模型,将材料热力学计算和第一性原理计算相结合,研究了Zn_xMn_(1-x) Fe_2O_4和Ni_xMn_(1-x)Fe_2O_4立方相中的Zn~(2+)、Ni~(2+)、Mn~(2+)以及Fe~(3+)在8a和16d亚晶格上的占位有序化行为。结果表明:在锰铁氧体中,室温下Mn~(2+)完全占据在8a亚晶格上,Fe~(3+)完全占据在16d亚晶格上,属于正尖晶石结构;随着热处理温度升高,在1 273 K达到热处理平衡时的占位构型为(Fe~(3+)0.09Mn~(2+)0.91)[Fe~(3+)1.91Mn~(2+)0.09]O_4,在热处理温度升至1 473 K时,达到热处理平衡时的占位构型为(Fe~(3+)0.11Mn~(2+)0.89)[Fe~(3+)1.89Mn~(2+)0.11]O_4,均与实验结果符合较好。在锌铁氧体中,室温下Zn~(2+)完全占据在8a亚晶格上,Fe~(3+)完全占据在16d亚晶格上,属于正尖晶石结构;在热处理温度较高时,Zn~(2+)和Fe~(3+)发生部分置换,符合实验结果。在镍铁氧体中,半数的Fe~(3+)在室温下占据在8a亚晶格上,Ni~(2+)与剩下另一半的Fe~(3+)共同占据在16d亚晶格上,仅在热处理温度较高的时候发生微弱变化,亦与已有的实验结果吻合。在此基础上,本文进一步通过热力学模型研究了立方相尖晶石结构的Zn_xMn_(1-x)Fe_2O_4、Ni_xMn_(1-x)Fe_2O_4复合体系中阳离子占位行为与热处理温度对占位的影响规律。  相似文献   

15.
CTAB-Mn3O4 nanocomposites: Synthesis,NMR and low temperature EPR studies   总被引:1,自引:0,他引:1  
We are reporting on the synthesis of Mn3O4 nanoparticles and CTAB-Mn3O4 nanocomposites via a sonochemical route using MnCl2, ethanol, NaOH and CTAB. The crystalline phase was identified as Mn3O4. The crystallite size of the CTAB-Mn3O4 nanocomposite was identified as 13 ± 5 nm from X-ray line profile fitting and the particle size from TEM was 107.5 ± 1.4 nm. The interaction between CTAB and the Mn3O4 nanoparticles was investigated by FTIR and 1H NMR spectroscopies. Two different magnetic phase transitions were observed for both samples below the Curie temperature (43 °C) by using a low temperature Electron Paramagnetic Resonance (EPR) technique. Also we determined the effect of the capping with CTAB on the reduction in absorbed power.  相似文献   

16.
The kinetics of Mn2O3 digestion in various H2SO4 solutions (0.5-2.0 M) and at various temperatures (ambient to 80 °C) to form solid γ-MnO2 and soluble Mn(II) have been examined using X-ray diffraction. Using a modified first-order Avrami expression to describe digestion kinetics, rate constants in the range 0.02-0.98 h−1 were found for Mn2O3 disappearance, and 0.03-0.42 h−1 for γ-MnO2 formation, with higher H2SO4 concentrations and temperatures leading to faster conversion rates. Also, for a particular set of experimental conditions, the rate of γ-MnO2 formation was always slower than Mn2O3 disappearance. This was interpreted in terms of the solubility and stability of the soluble Mn(III) intermediated formed during the digestion. Activation energies for Mn2O3 dissolution and γ-MnO2 formation were also determined.  相似文献   

17.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

18.
The standard free energy of formation of YbFe2O4, Yb2Fe3O7, YbFeO3, and Yb3Fe5O12 from metallic iron, Yb2O3, and oxygen was determined to be ?100.38, ?158.38, ?58.17, and ?283.40 kcal/mole, respectively, at 1200°C on the basis of the phase equilibria in the FeFe2O3Yb2O3 system. The FeFe2O3-Lanthanoid sesquioxide systems were classified into four types with respect to the assemblage of the ternary compounds in stable existence at 1200°C, and the standard free energy of formation of YbFeO3 was compared with those of the other lanthanoid-iron perovskites.  相似文献   

19.
In this paper, monodisperse Fe3O4 nanoparticles with single crystalline structure were synthesized via a facile environment-friendly method. And the size of the nanoparticles ranges from 10 nm to 15 nm. As-synthesized Fe3O4 were characterized by X-ray diffraction instrument (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectrometer and field emission transmission electron microscope (FE-TEM). The effect of tartaric acid (TA) amount on products was investigated by XRD and TEM. The results indicated that TA could commendably modulate the crystalline phase, morphology and size of nanometer Fe3O4. A possible generated mechanism of Fe3O4 crystals was proposed in virtue of UV–vis absorption spectra. Besides, the magnetic properties of as-synthesized Fe3O4 were detected.  相似文献   

20.
基于尖晶石晶体结构信息,本文采用热力学三亚晶格模型,将材料热力学计算和第一性原理计算相结合,研究了ZnxMn1-x Fe2O4和NixMn1-xFe2O4立方相中的Zn2+、Ni2+、Mn2+以及Fe3+在8a和16d亚晶格上的占位有序化行为。结果表明:在锰铁氧体中,室温下Mn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;随着热处理温度升高,在1 273 K达到热处理平衡时的占位构型为(Fe0.093+Mn0.912+)[Fe1.913+Mn0.092+]O4,在热处理温度升至1 473 K时,达到热处理平衡时的占位构型为(Fe0.113+ Mn0.892+)[Fe1.893+Mn0.112+]O4,均与实验结果符合较好。在锌铁氧体中,室温下Zn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;在热处理温度较高时,Zn2+和Fe3+发生部分置换,符合实验结果。在镍铁氧体中,半数的Fe3+在室温下占据在8a亚晶格上,Ni2+与剩下另一半的Fe3+共同占据在16d亚晶格上,仅在热处理温度较高的时候发生微弱变化,亦与已有的实验结果吻合。在此基础上,本文进一步通过热力学预测建立了立方相尖晶石结构的ZnxMn1-xFe2O4、NixMn1-xFe2O4复合体系中阳离子占位行为与热处理温度对占位的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号