首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, we investigate the effect of the spanwise width on the mixing layer behind a rearward-facing step. Results for aspect ratios (tunnel width/step height) of 10 and 4 and Reynolds numbers of 11,000 and 5,000 are presented. A frequency shifted, single component LDV system was used to obtain mean streamwise velocity profiles, turbulence intensity profiles, and normal velocity spectra at four streamwise and three spanwise positions for each test case. The mean velocity and turbulence intensity profiles are constant across the width of the test section for either of the Reynolds numbers considered, but there are significant differences among the cases studied. At a distance greater than three step heights down-stream of the step, the peak turbulence intensity is greater for higher aspect ratio and is relatively insensitive to Reynolds number. The peak frequency is lower and the spectrum is narrower for a higher aspect ratio in the region near the step.  相似文献   

3.
The wake characteristics of unconfined flows over triangular prisms of different aspect ratios have been numerically analysed in the present work. For this purpose, a fixed Cartesian-grid based numerical technique that involves the porous medium approach to mimic the effect of solid blockage has been utilised. Correspondingly, laminar flow simulations ranging from the sub-critical regime (before the onset of vortex shedding) to the super-critical regime have been considered here within the limits of two-dimensionality. In the sub-critical regime, correlations relating the wake bubble length with Reynolds number (Re) have been proposed for various aspect ratios. Also, the effects of aspect ratio and Reynolds Number on the drag force coefficient (CD) have been characterised for two different geometrical orientations of the prism (base or apex facing the flow). Subsequently, the critical Reynolds number at the onset of vortex shedding has been predicted for each of the aspect ratio considered, by an extrapolation procedure. The unsteady flow characteristics of the super-critical regime are finally highlighted for different aspect ratios and triangular orientations considered in the study.  相似文献   

4.
5.
The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 106. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.  相似文献   

6.
以高空长航时大展弦比太阳能无人机机翼为研究对象,针对分布式电驱螺旋桨滑流和大展弦比机翼之间耦合的复杂气动干涉问题,采用滑移网格方法、动网格技术、SST k-ω RANS湍流模型和CFD/CSD (Computational Fluid Dynamics/Computational Structural Dynamics)双向流固耦合技术,研究了螺旋桨不同转速、布局方式和气动阻尼对机翼气动弹性响应的影响。数值计算结果表明,螺旋桨滑流会改变机翼表面的压力分布;螺旋桨流场对机翼的扰动频率接近机翼的结构固有频率时,机翼会发生共振;螺旋桨的位置越靠近翼尖,或螺旋桨的数量增多,都将增加机翼气动弹性响应的幅值。  相似文献   

7.
Effects of aspect ratio on shock-cylinder interaction   总被引:1,自引:0,他引:1  
Interaction of a planar shock wave with a discontinuous SF& elliptic gas cylinder surrounded by air is investigated. Special attention is given to the effects of aspect ratio on wave pattern, interface evolution, and material mixing. An ideal discontinuous two-dimensional gas cylinder is created by the soap film technique in experiments, and the shocked flow is captured by schlieren photography combined with a high-speed video camera. The surface of the gas cylinder is clear enough to observe the shock motions, and the distinct interface boundaries allow us to extract more details. As aspect ratio varies, the shock focusing process is quite different. For the prolate gas cylinder, an inward jet is produced although an internal shock focusing firstly occurs. The inward jet has never been observed in membraneless prolate ellipse experiments probably because the inward jet is so faint due to less vorticity generation on membraneless interface that it is difficult to be observed. For the oblate gas cylinder, a secondary vortex pair, which has not been described clearly in previous work, is derived from the downstream interface. The material lines at early stages are extracted from experiments, which grow faster as aspect ratio increases. The in terfacial area, the mean volume fraction and the mixing rate are presented from computations, and the results show that the increase of aspect ratio promotes the mixing between gases.  相似文献   

8.
9.
10.
The influence of an asymmetrically mounted, single tripwire on the shedding and wake characteristics of a vertical, surface-mounted finite circular cylinder is investigated experimentally. Height-to-diameter aspect ratios of 3 and 6 are considered. It is shown that a critical position for the tripwire exists, which is characterised in an abrupt change in the shedding frequency and wake structure. Results further suggest that the tripwire can strengthen 2D wake properties. The influence of the aspect ratio is due to tip-wake flow interactions and thus differs fundamentally from two-dimensional geometries.  相似文献   

11.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

12.
A theoretical, experimental and numerical study is presented of the interaction of a vortex–wake created by an upstream blade with a downstream prismatic block. The aim of the study is to investigate the fundamentals of force and noise generation for this type of flow and explain how inter-object spacing affects the far-field noise level. A theoretical model, based on a compact form of Curle's formulation, is developed and shows that acoustically constructive or destructive interference is determined by the amplitude and phase of the forces on each object. Experimental and two-dimensional, unsteady numerical results of the vortex–wake interaction case are presented for several blade–block separation distances. Using a combination of experimental and numerical data, the theoretical model is able to explain observed variations in far-field noise level with blade–block separation distance. The numerical model accurately predicts the phase relationship between the unsteady forces on each object.  相似文献   

13.
It is generally admitted that the gas holdup is independent of the column dimensions and gas sparger design if three criteria are satisfied: the diameter of the bubble column is larger than 0.15 m, gas sparger openings are larger than 1–2 mm and the aspect ratio is larger than 5. This paper contributes to the existing discussion; in particular, the effect of the aspect ratio (within the range 1–15) in a counter-current gas-liquid bubble column has been experimentally studied and a new gas holdup correlation to estimate the influence of aspect ratio, operation mode and working fluid on the gas holdup has been proposed. The bubble column, equipped with a spider gas sparger, is 5.3 m in height, has an inner diameter of 0.24 m; gas superficial velocities in the range of 0.004–0.23 m/s have been considered, and, for the runs with water moving counter-currently to the gas phase, the liquid has been recirculated at a superficial velocity of −0.0846 m/s. Filtered air has been used as the gaseous phase in all the experiments, while the liquid phase has included tap water and different aqueous solutions of sodium chloride as electrolyte. Gas holdup measurements have been used to investigate the flow regime transitions and the global bubble column hydrodynamics. The counter-current mode has turned out to increase the gas holdup and destabilize the homogeneous flow regime; the presence of electrolytes has resulted in increasing the gas holdup and stabilizing the homogeneous flow regime; the aspect ratio, up to a critical value, has turned out to decrease the gas holdup and destabilize the homogeneous flow regime. The critical value of the aspect ratio ranged between 5 and 10, depending on the bubble column operation (i.e., batch or counter-current modes) and liquid phase properties. Since no correlation has been found in the literature that can correctly predict the gas holdup under the investigated conditions, a new scheme of gas holdup correlation has been proposed. Starting from considerations concerning the flow regime transition, corrective parameters are included in the gas holdup correlation to account for the effect of the changes introduced by the aspect ratio, operation mode and working fluid. The proposed correlation has been found to predict fairly well the present experimental data as well as previously published gas holdup data.  相似文献   

14.
Viscosity data for fibre suspensions are produced using cone-and-plate geometry of enhanced dimensions for the reduced influence of fibre-wall interactions. Semi-concentrated suspensions of monodisperse polyamide fibres in silicone oil, with a variety of fibre concentrations (2, 5 and 8%), lengths and diameters, were studied. The suspension viscosity was measured in a range of shear stress in order to study the stress dependence. The study here focuses on the nature of the forces and interactions that contribute to the suspension viscosity. The results show that at sufficiently high stress levels, the suspension viscosity tends to reach a steady-state. At very low stress levels the suspension viscosity increases over time, most likely due to structures formed by adhesive forces. At higher concentrations, the viscosity depends on the absolute size of the fibres, again indicating the presence of non-hydrodynamic interactions.  相似文献   

15.
The main objective of this work is to investigate the role of the plastic deformation of metal foams on the dynamic behaviour of aluminium foam-filled columns with respect to their energy absorbing capabilities. The influence of the cross-section shape as well as other parameters is thoroughly studied. A comparison with correspondent hollow-sections is performed concerning the dissipation of kinetic energy and the obtained deformed profiles. For this particular purpose, three-dimensional finite element modelling dynamic analyses are carried out using ABAQUS/Explicit in order to achieve an in-depth study of the structural crash behaviour, during which energy needs to be absorbed in a controlled manner. A comprehensive numerical study of the crush behaviour of aluminium foam-filled sections undergoing axial compressive loading is performed. The results obtained are also analysed with respect to the reduction in the length of the structural element and impact time, the effect of friction between the foam and the outer skin, the energy decomposition, the role of plastic deformation, the influence of the skin material and impact velocity, and the influence of the shape of the cross-section on the impact behaviour. A comparison with existing analytical expressions is made in order to corroborate the numerical results.  相似文献   

16.
17.
In three-dimensional flows, the local characteristics of the medium in the wake behind a supersonic body at Reynolds numbers Re 5·104 depend in a complicated manner on the coordinates. However, in a number of cases it is important to know only the parameters of the medium averaged over the transverse section of the wake. For example, for the diagnostics of the plasma of the wake behind a body by means of microwave resonators the electron density averaged over the section is used [1]. The chemiluminescent radia tion of the wake is also obtained in an averaged form [2]. It is therefore worthwhile obtaining the average characteristics of the medium without detailed study of the local parameters. In the present paper, a rule is established that makes it possible to use the results obtained for the far viscous wake behind an axisymmetric body in the case of the wake behind a three-dimensional body that is nearly axisymmetric, the flow conditions being similar. The three-dimensional wake is considered to the distances until it degenerates into an axisymmetric wake.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 148–150, May–June, 1980.We thank G. Yu. Stepanov and É. Z. Apshtein for helpful advice in a discussion of the results.  相似文献   

18.
A 3D Numerical study of mixed convection air flow in upward solar air heater with large spanwise aspect ratio (A = 10 to 40) was performed using CFD commercial code Fluent 14.5 (ANSYS). The main objective of this study is to investigate the channel height's effect (aspect ratio) on flow pattern and heat transfer in upward solar air heater in the particular case of low Re and high aspect ratio. The bottom plate (absorber) was submitted to Constant Heat Flux (CHF) in the range of 200 to 1000 W/m2 and Reynolds number was varied from 50 to 1000. Our results are in concordance with most of authors conclusions about Poiseuille–Rayleigh–Benard flows. In mixed convection, increasing heat flux enhances heat transfer unlike forced convection flows. Simulation results of flow visualizations and Nusselt number calculations have shown that depending on Ri*, the velocity and temperature distributions in SAH vary greatly with the channel's height. The obtained results were different from previous studies. Indeed, our investigation of channel's height was achieved for the same heat flux but different Grashof numbers. For low channel's heights (high aspect ratio), increasing heat flux has not a significant effect but for higher channel's heights, an augmentation of heat flux enhances buoyancy effects in the flow and causes high turbulence. Also, increasing Reynolds number in low channel's heights (high A), can enhance substantially heat transfer. For higher channel's heights (low A), increasing Reynolds number decreases Ri* and thus buoyancy forces. Heat transfer is reduced and so Nusselt number. The obtained results may be very useful for engineers in designing and testing solar collectors.  相似文献   

19.
This work studies the macroscopic and microscopic behaviors of ellipsoids under triaxial tests using 3D discrete element method (DEM) simulation. To avoid the boundary effect, a novel stress servo-controlled periodic boundary condition is proposed to maintain the confining pressure of samples during testing. The shape features of ellipsoids are investigated, including the aspect ratio of elongated/oblate ellipsoids and the initial arrangement directions of ellipsoids. The macroscopic properties of ellipsoidal particle samples, such as the deviatoric stress, volumetric strain, internal friction angle, as well as dilatancy angles are explored. Elongated and oblate ellipsoids with varying aspect ratios are investigated for the occurrence of stick-slips. In addition, it is demonstrated that the initial arrangement direction has a significant impact on the coordination number and contact force chains. The corresponding anisotropy coefficients of the entire contact network are analyzed to probe the microscopic roots of macroscopic behavior.  相似文献   

20.
The time-averaged velocity and streamwise vorticity fields within the wake of a stack were investigated in a low-speed wind tunnel using a seven-hole pressure probe. The experiments were conducted at a Reynolds number, based on the stack external diameter, of ReD=2.3×104. The stack, of aspect ratio AR=9, was mounted normal to a ground plane and was partially immersed in a flat-plate turbulent boundary layer, where the ratio of the boundary layer thickness to the stack height was δ/H≈0.5. The jet-to-cross-flow velocity ratio was varied from R=0 to 3, which covered the downwash, crosswind-dominated and jet-dominated flow regimes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip vortex pair located close to the free end of the stack, and the base vortex pair located close to the ground plane within the flat-plate boundary layer, were similar to those found in the wake of a finite circular cylinder, and were associated with the upwash and downwash flow fields within the stack wake, respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair had the same orientation as the base vortex pair and was associated with the jet rise. The peak vorticity and strength of the streamwise vortex structures were functions of the jet-to-cross-flow velocity ratio. For the tip vortex structures, their peak vorticity and strength reduced as the jet-to-cross-flow velocity ratio increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号