首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang  Y.  Djie  H. S.  Ooi  B. S.  Hwang  J. C. M.  Fang  X. -M.  Wu  Y.  Fastenau  J. M.  Liu  W. K.  Dang  G. T.  Chang  W. H. 《Laser Physics》2008,18(4):400-402

The first demonstration of a monolithic integrated extended-cavity laser in an InAs/InAlGaAs quantum-dash-in-well structure on an InP substrate is reported. The integration is achieved using nitrogen implantation-induced quantum-dash intermixing. A differential blue shift of 128 nm has been obtained between the active and intermixed passive sections. A propagation loss of 9.2 cm?1 within the intermixed passive waveguide section has been measured by comparing laser threshold currents of all active and integrated extended passive cavity devices.

  相似文献   

2.
We demonstrate an improvement in efficiency of GaAs solar cells using front surface texturing with dielectric 1D and 2D nanopatterns obtained by a low cost laser interference lithography technique. The strong light scattering by the surface dielectric nanopatterns effectively increases the optical path of the incident light in the absorber layers resulting in an efficiency increase up to 23.5% compared to that of the reference solar cell. The observed efficiency improvement in the studied solar cells shows the potential use of low cost photoresist as an antireflection coating material and further application of other robust dielectric materials as texturing layer.  相似文献   

3.
Depleted bulk heterojunction(DBH)PbS quantum dot solar cells(QDSCs),appearing with boosted short-circuit current density(J_(sc)),represent the great potential of solar radiation utilization,but suffer from the problem of increased interfacial charge recombination and reduced open-circuit voltage(V_(oc)).Herein,we report that an insertion of ultrathin Al_2O_3 layer(ca.1.2 A thickness)at the interface of ZnO nanowires(NWs)and Pb S quantum dots(QDs)could remarkably improve the performance of DBH-QDSCs fabricated from them,i.e.,an increase of V_(oc) from 449 mV to 572 mV,Jsc from21.90 mA/cm~2 to 23.98 mA/cm~2,and power conversion efficiency(PCE)from 4.29% to 6.11%.Such an improvement of device performance is ascribed to the significant reduction of the interfacial charge recombination rate,as evidenced by the light intensity dependence on Jsc and Voc,the prolonged electron lifetime,the lowered trap density,and the enlarged recombination activation energy.The present research therefore provides an effective interfacial engineering means to improving the overall performance of DBH-QDSCs,which might also be effective to other types of optoelectronic devices with large interface area.  相似文献   

4.
X.F. Hu 《Applied Surface Science》2006,252(13):4625-4627
The synthetic antiferromagnets (SAF) have been used in spin-valve sensor in data storage industry [1]. We report a new hard/Ru/soft sandwich structure (SHBL) fabricated by pulsed lased deposition to replace current single layer structure for information recording application. SHBL consists of two magnetic layers separated by thin nonmagnetic layers, typically with Ru layers of 0.7-1.2 nm, through which antiferromagnetic coupling is induced. Varying the relative thickness of the magnetic layers, the spacer layers, and the type of magnetic materials can alter magnetic properties of CoCrPt/Ru/CoFe superlattice. The coercivity Hc and grain size of magnetic layer is also dependent on the laser fluence. High laser fluence results in both small grain size and high Hc. The observed phenomena are related to high quenching and deposition rates during PLD at high fluence, resulting in more pronounced phase segregation.  相似文献   

5.
A novel method for preparing a luminescent solar concentrator(LSC) with fluorescent aqueous layer sandwiched between two pieces of flat glass is developed. By this method, an aqueous layer concentrator with a size of 78×78×7(mm) is fabricated. After coupled with silicon solar cell, the concentrator shows a power conversion efficiency of 3.9%, about 30% higher than that of the same sized laminated glass concentrator employing the same dyes. Furthermore, the measured efficiency almost reaches the calculated limit of the aqueous layer LSC. This kind of aqueous layer LSC offers a potential application in the buildingintegrated photovoltaics.  相似文献   

6.
冯秋菊  蒋俊岩  唐凯  吕佳音  刘洋  李荣  郭慧颖  徐坤  宋哲  李梦轲 《物理学报》2013,62(5):57802-057802
利用简单的化学气相沉积方法, 首先在n-Si衬底上生长Sb掺杂p-ZnO薄膜, 并在此基础上制作了p-ZnO/n-Si异质结发光二极管.对制备的Sb掺杂ZnO薄膜 在800 ℃下进行了热退火处理, 发现退火后样品的晶体质量和表面形貌都得到明显提高, 并且薄膜呈现的电导类型为p型, 载流子浓度为9.56× 1017 cm-3. 此外, 该器件还表现出良好的整流特性, 正向开启电压为4.0 V, 反向击穿电压为9.5 V. 在正向45 mA的注入电流条件下, 器件实现了室温下的电致发光. 这说明较高质量的ZnO薄膜也可以通过简单的化学气相沉积方法来实现, 这为ZnO基光电器件的材料制备提供了一种简单可行的方法. 关键词: CVD p-ZnO 异质结 电致发光  相似文献   

7.
Pulsed laser deposition was used to deposit TiO2 anti-reflection coatings for silicon solar cells. We deposited smooth coatings with an optimal refractive index of 2.3 for use as anti-reflection coating. The introduction of passivating qualities was achieved by deposition in different gasses. The best result was obtained with deposition in a water vapour ambient. The plasma shape and the position of the substrate in the plasma appeared important for properties such as the smoothness, the thickness distribution and the passivating quality. An increase in the measured effective lifetime of up to 137% during modulated free carrier absorption measurements was observed.  相似文献   

8.
Excellent passivation of black silicon surfaces by thin amorphous silicon layers deposited with plasma enhanced chemical vapor deposition is demonstrated. Minority charge carrier lifetimes of 1.3 milliseconds, enabling an implied open‐circuit voltage of 714 mV, were achieved. The influence of amorphous silicon parasitic epitaxial growth and thickness, as well as of the texture depth is investigated. Furthermore, quantum efficiency gains for wavelengths above 600 nm, as compared to random textured solar cells, are demonstrated in 17.2% efficient amorphous–crystalline silicon heterojunction solar cells with black silicon texture. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
采用甚高频等离子体增强化学气相沉积技术成功地制备了不同硅烷浓度和辉光功率条件下的微晶硅电池.电池的J-V测试结果表明:在实验的硅烷浓度和功率范围内,随硅烷浓度的降低和功率的加大,对应电池的开路电压逐渐变小;硅烷浓度的不同对电池的短路电流密 度有很大的影响,但功率的影响在实验研究的范围内不是很显著.对于微晶硅电池,N层最好 是非晶硅,这是因为一方面可以降低对电流的横向收集效应,另一方面也降低了电池的漏电概率,提高了电池的填充因子. 关键词: 微晶硅太阳电池 甚高频等离子体增强化学气相沉积  相似文献   

10.
In this paper,InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied.The short-circuit density,fill factor and open-circuit voltage (V oc) of the device are 0.7 mA/cm 2,0.40 and 2.22 V,respectively.The results exhibit a significant enhancement of V oc compared with those of InGaN-based hetero and homojunction cells.This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing V oc of an In-rich In x Ga 1 x N solar cell.The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm).The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.  相似文献   

11.
《Current Applied Physics》2020,20(1):172-177
Doping is a widely-implemented strategy for enhancing the inherent electrical properties of metal oxide charge transport layers in photovoltaic devices because higher conductivity of electron transport layer (ETL) can increment the photocurrent by reducing the series resistance. To improve the conductivity of ETL, in this study we doped the ZnO layer with aluminum (Al), then investigated the influence of AZO on the performance of inverted bulk heterojunction (BHJ) polymer solar cells based on poly [[4,8-bis [(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b’]dithiophene-2,6-diyl]-[3-fluoro-2[(2-ethylhexyl)-carbonyl]-thieno-[3,4-b]thiophenediyl ]] (PTB7):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM). The measured conductivity of AZO was ~10−3 S/cm, which was two orders of magnitude higher than that of intrinsic ZnO (~10−5 S/cm). By decreasing the series resistance (Rs) in a device with an AZO layer, the short circuit current (Jsc) increased significantly from 15.663 mA/cm2 to 17.040 mA/cm2. As a result, the device with AZO exhibited an enhanced power conversion efficiency (PCE) of 8.984%.  相似文献   

12.
13.
Effect of chromium interlayer deposition on 2-dimensional, periodic silver nanoparticle array structure was systematically investigated. The silver nanoparticle array was fabricated by nanosphere lithography with assembled polystyrene nanospheres being as a deposition mask. The chromium interlayer was deposited by thermal evaporation either on the nanosphere mask or directly on the silicon substrate. The structures of the achieved silver nanoparticle arrays were characterized by scanning electron microscope and were compared with that of silver nanoparticle array without the interlayer. With analysis of the anomalies among the structures the critical role of the interlayer in the periodic nanoparticle array fabrication was revealed.  相似文献   

14.
A high‐efficiency bulk heterojunction organic photovoltaic cell (OPV) was achieved by the electrospray deposition method. The surface roughness of the P3HT:PCBM thin film can be reduced using the mixed solvent consisting of o‐dichlorobenzene (o‐DCB) and acetone. The effect of acetone concentration is related to its dielectric constant. Under an optimized concentration of acetone in o‐DCB (20 vol%), the P3HT/PCBM active layer with a smooth surface can be formed, and the power conversion efficiency of the OPV was 1.9%.

  相似文献   


15.
16.
Zheng Fang 《中国物理 B》2022,31(11):118801-118801
SnO2 is widely used as the electron transport layer (ETL) in perovskite solar cells (PSCs) due to its excellent electron mobility, low processing temperature, and low cost. And the most common way of preparing the SnO2 ETL is spin-coating using the corresponding colloid solution. However, the spin-coated SnO2 layer is sometimes not so compact and contains pinholes, weakening the hole blocking capability. Here, a SnO2 thin film prepared through magnetron-sputtering was inserted between ITO and the spin-coated SnO2 acted as an interlayer. This strategy can combine the advantages of efficient electron extraction and hole blocking due to the high compactness of the sputtered film and the excellent electronic property of the spin-coated SnO2. Therefore, the recombination of photo-generated carriers at the interface is significantly reduced. As a result, the semitransparent perovskite solar cells (with a bandgap of 1.73 eV) based on this double-layered SnO2 demonstrate a maximum efficiency of 17.7% (stabilized at 17.04%) with negligible hysteresis. Moreover, the shelf stability of the device is also significantly improved, maintaining 95% of the initial efficiency after 800-hours of aging.  相似文献   

17.
A simple and efficient light-guide/2D-CPC solar pumping approach is proposed. A fused silica light-guide assembly is used to transmit 6 kW concentrated solar power from the focal spot of a large parabolic mirror to the entrance aperture of a 2D-CPC pump cavity, where a long and thin Nd:YAG rod is efficiently pumped. Numerical calculations are made for different light-guides, 2D-CPC cavities and laser rods. The laser output power is investigated through finite element analysis. With 4 mm diameter rod, the maximum calculated laser power of 75.8 W is obtained, corresponding to the conversion efficiency of more than 11 W/m2. The tracking error dependent laser power losses are lower than 4%. A small scale prototype was constructed and tested, reaching 8.1 W/m2 conversion efficiency.  相似文献   

18.
采用PLD方法制备了Fe/Al合金薄膜,研究了Fe/Al合金薄膜的物相、结构、应力等。研究表明薄膜的沉积速率随着衬底温度的升高而降低。原子力显微镜(AFM)图像显示,薄膜表面平整、致密且光滑,均方根粗糙度小于1 nm。等离子体发射谱(ICP)表明Fe/Al原子比为1∶1。X射线小角衍射(XRD)分析表明薄膜中的物相是Al0.5Fe0.5,Al0.5Fe0.5晶体具有简单立方结构(SC),晶格常数为0.297 nm,平均晶粒尺寸为81.74 nm,平均微畸变为0.007 6。  相似文献   

19.
Nucleation and growth lead to substantial strain in nanoparticles embedded in a host matrix.The distribution of strain field plays an important role in the physical properties of nanoparticles.Magnetic Ni/NiO core/shell nanoparticles embedded in the amorphous Al2O3 matrix were fabricated by pulsed laser deposition.The results from a high-resolution transmission electron microscope also revealed that the core/shell nanoparticles consist of a single crystal Ni core with a faced-centered cubic structure(Space ...  相似文献   

20.
陈新亮  陈莉  周忠信  赵颖  张晓丹 《物理学报》2018,67(11):118401-118401
介绍了近年来低成本Cu_2O/ZnO氧化物异质结太阳电池方面的研究进展.应用于光伏器件的吸收层材料Cu_2O是直接带隙半导体材料,天然呈现p型;其原材料丰富,且对环境友好.Cu_2O/ZnO异质结太阳电池结构主要有平面结构和纳米线/纳米棒结构.纳米结构的Cu_2O太阳电池提高了器件的电荷收集作用;通过热氧化Cu片技术获得的具有大晶粒尺寸平面结构Cu_2O吸收层在Cu_2O/ZnO太阳电池应用中展现出了高质量特性.界面缓冲层(如i-ZnO,a-ZTO,Ga_2O_3等)和背表面电场(如p~+-Cu_2O层等)可有效地提高界面处能级匹配和增强载流子输运.10 nm厚度的Ga_2O_3提供了近理想的导带失配,减少了界面复合;Ga_2O_3非常适合作为界面层,其能够有效地提高Cu_2O基太阳电池的开路电压V_(oc)(可达到1.2 V)和光电转换效率.p~+-Cu_2O(如Cu_2O:N和Cu_2O:Na)能够减少器件中背接触电阻和形成电子反射的背表面电场(抑制电子在界面处复合).利用p型Na掺杂Cu_2O(Cu_2O:Na)作为吸收层和Zn_(1-x)Ge_x-O作为n型缓冲层,Cu_2O异质结太阳电池(器件结构:MgF_2/ZnO:Al/Zn_(0.38)Ge_(0.62)-O/Cu_2O:Na)光电转换效率达8.1%.氧化物异质结太阳电池在光伏领域展现出极大的发展潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号