首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A sensitive and fast HPLC/MS/MS method for measurement of sufentanil and morphine in plasma was developed and validated. A single liquid-liquid extraction in alkaline medium was used for the cleanup of plasma, and fentanyl was added as an internal standard (IS). The analyses were carried out using a C18 column and the mobile phase acetonitrile-5 mM ammonium acetate + 0.25% formic acid (70 + 30, v/v). The triple-quadrupole mass spectrometer equipped with an electrospray source in positive mode was set up in the selective reaction monitoring mode to detect precursor --> product ion transition 387.0 > 238.0, 285.7 > 165.1, and 337.0 > 188.0 for sufentanil, morphine, and IS, respectively. The method was linear in the 0.05 (LOQ) - 500 ng/mL range for sufentanil and 10 (LOQ) - 1000 ng/mL range for morphine. Good selectivity, linearity, precision, accuracy, and robustness were obtained for the HPLC/MS/MS method. The proposed method was successfully applied for the determination of sufentanil and morphine in patients undergoing cardiac surgery.  相似文献   

2.
A simple, rapid, and precise HPTLC method was developed for quantitative estimation of gallic acid in stem bark of Myrica esculenta, family Myricaceae. Separation was performed on silica gel 60F254 HPTLC plates using toluene-ethyl acetate-formic acid-methanol (3 + 3 + 0.6 + 0.4, v/v/v/v) mobile phase for separation of the extracted components. The determination was carried out in the UV densitometric absorbance-reflection mode at 280 nm. The amount of gallic acid in free and combined form in the stem bark powder was found to be 0.276 and 0.541%, respectively, on a dry weight basis. The method was validated in terms of linearity, accuracy, precision, and specificity according to International Conference on Harmonization guidelines. Gallic acid response was found to be linear over a broad concentration range of 0.4-2.0 microg/band. LOD and LOQ were 0.103 and 0.312 microg/spot, respectively. The developed method is capable of quantifying amounts of gallic acid in stem bark powder of M. esculenta.  相似文献   

3.
An HPTLC method with densitometric quantification using fluorescence at 313 nm was developed and validated for the determination of ofloxacin residue in controlling pharmaceutical equipment cleanliness. Simulated samples at a residue level of 1 mg/m2 were prepared by spreading the calculated amount of ofloxacin solution on 1, 5, and 10 dm2 stainless steel surfaces. After evaporation of the solvent, the residue was removed by two ethanol wetted cotton swabs, which were thereafter extracted with the mixture of ethanol and Na2EDTA-water solution at pH 11 for 15 min with sonication. The extract and standards were applied on HPTLC silica gel 60 plates and then developed in a horizontal developing chamber from both sides using ethanol-conc. ammonia (4+1, v/v) as the mobile phase. The mean recovery (n=6) at 1 mg/m2 from 1, 5, and 10 dm2 was 95.3, 88.6, and 89.7% with the CV values 3.78, 4.41, and 4.97%, respectively. The absolute detection limit was 0.6 ng and the quantitation limit was 2 ng, but it was shown that these can be improved by immersion of the developed plate into a solution of liquid paraffin-n-hexane (1+2, v/v) to approximately 0.25 and 0.9 ng, respectively. The LOD of the method using detection without paraffin-n-hexane was 3, 0.6, and 0.3 microg/m2 by swabbing 1, 5, and 10 dm2, respectively. The method can be applied to routine control of pharmaceutical equipment cleanliness by sampling from stainless steel surface areas of 1 to 10 dm2 with acceptable residue limit/surface of 1 mg/m2.  相似文献   

4.
Sucralose, a persistent chlorinated substance used as sweetener, can already be found in waste water, and various countries focused on the release of sucralose into the aquatic environment. A quantitative high-performance thin-layer chromatography (HPTLC) method, which is orthogonal to existing methods, was developed to analyze sucralose in water. After sample preparation, separation of up to 17 samples was performed in parallel on a HPTLC plate silica gel 60 F(254) with a mixture of isopropyl acetate, methanol and water (15:3:1, v/v/v) within 15 min. Due to the weak native UV absorption of sucralose (≤200 nm), various post-chromatographic derivatization reactions were compared to selectively detect sucralose in effluent and surface water matrices. Thereby p-aminobenzoic acid reagent was discovered as a new derivatization reagent for sucralose. Compared to the latter and to β-naphthol, derivatization with aniline diphenylamine o-phosphoric acid reagent was slightly preferred and densitometry was performed by absorbance measurement at 400 nm. The limit of quantification (LOQ) of sucralose in drinking and surface water was calculated to be 100 ng/L for a given recovery rate of 80% and the extraction of a 0.5 L water sample. The sucralose content determined in four water samples obtained during an interlaboratory trial in 2008 was in good agreement to the mean laboratory values of that trial. According to the t-test, which compares the results with the target value, the means obtained by HPTLC were not significantly different from the respective means of six laboratories, analyzed by HPLC-MS/MS or HPLC-TOF-MS with the use of mostly isotopically labeled standards. The good accuracy and high sample throughput capacity proved HPTLC as a well suited method regarding quantification of sucralose in various aqueous matrices.  相似文献   

5.
Due to their complexity, multicomponent herbal drugs pose enormous analytical challenges for quality control (QC). Although they may have traditionally been used for hundreds of years, the information about their chemical composition is often still limited. Selecting suitable markers to monitor the identity and potency of the mixture is, therefore, difficult. There is also the possibility of natural variability for each plant. This paper illustrates a pragmatic and practical approach to QC of a multicomponent herbal drug by HPTLC. Cangzhu xianglian xan (CXS), composed of the herbal drugs Coptis rhizome, Aucklandia root, and Atractylodes rhizome (30 + 20 + 60, w/w/w), is used as an example. A characteristic fingerprint can be generated for CXS with toluene-ethyl acetate-methanol-isopropanol-water (60 + 30 + 20 + 15 + 3, v/v/v/v/v) mobile phase on HPTLC silica gel 60 conditioned with ammonia. While the corresponding monograph of the Chinese Veterinary Pharmacopoeia focuses only on the detection of berberine, one of the principal components of Coptis rhizome, the proposed method of identification determines the presence of all three components in the drug after derivatization with anisaldehyde reagent. The same method can also be used to quantitatively determine the content of berberine by scanning densitometry. This paper provides details about the validation of the qualitative and quantitative determinations.  相似文献   

6.
This paper describes two simple, specific, accurate, and precise methods for estimation of olopatadine hydrochloride (OLO) in tablet dosage form. The first method is a stability-indicating isocratic RP-HPLC method. The analysis is performed on an RP-18 column using 0.1% orthophosphoric acid (adjusted to pH 4.5 with triethylamine)-acetonitrile (75 + 25, v/v) mobile phase at a flow rate of 1 mL/min. Paracetamol (PAR) was selected as the internal standard. Retention times of OLO and PAR were 11.30 +/- 0.02 and 4.70 +/- 0.03 min, respectively. For the HPTLC method, precoated silica gel 60 F254 aluminum sheets were used as the stationary phase; the mobile phase was methanol-chloroform-ammonia (8 + 2 + 0.1, v/v/v). The detection of the analyte band was carried out at 301 nm, and its Rf value was 0.46 +/- 0.03. The analytical methods were validated according to International Conference on Harmonization guidelines. Linear regression analysis data for the calibration plots showed a good linear relationship between response and concentration in the range of 0.1-1 microg/mL and 0.1-0.9 microg/band for HPLC and HPTLC, respectively.  相似文献   

7.
An HPLC method was developed for the simultaneous determination of gnaphaliin A and B, active compounds of Gnaphalium liebmannii Sch. Bp ex Klatt. The HPLC separation was performed on an Inertsil ODS-3 (150 x 4.6 mm id, 5 microm) RP C18 column operated at 40 degrees C; the isocratic mobile phase was 0.02% aqueous orthophosphoric acid-methanol-acetonitrile (50 + 30 + 20, v/v/v), with a run time of 20 min and flow rate of 1.5 mL/min. Detection with a photodiode array detector (PDAD) was at 270 nm. The method was validated for linearity, repeatability, LOD, and LOQ. The LOD and LOQ for gnaphaliin A and B were found to be in the range of 0.4-0.5 and 1.0-1.4 microg/mL, respectively. This is the first report of an analytical method developed for the quantitative analysis of flavones from Gnaphalium species by HPLC-PDAD with applications for raw material and commercial products.  相似文献   

8.
An instrumental planar chromatographic (HPTLC) method for quantification of carbamazepine in human serum was developed using liquid‐liquid extraction with dichloromethane, fluorescence activation with perchloric acid 60%/ethanol/water (1:1:1, v/v) and fluorescence detection. Planar chromatographic separation was performed on precoated silica gel F254 HPTLC plates using a mixture of ethyl acetate/toluene/methanol/acetic acid glacial (5:4:0.5:0.5, v/v) as mobile phase. Densitometric detection was done at 366 nm. The method was validated for linearity, precision and accuracy. Linear calibration curves in the range of 3 and 20 ng/μL showed correlation coefficient of 0.998. The intra‐assay and inter‐assay precision, expressed as the RSD, were in the range of 0.41–1.24% (n = 3) and 2.17–3.17% (n = 9), respectively. The LOD was 0.19 ng, and the LOQ was 0.57 ng. Accuracy, calculated as percentage recovery, was between 98.98 and 101.96%, with a RSD not higher than 1.52%. The method was selective for the active principle tested. In conclusion, the method is useful for quantitative determination of carbamazepine in human serum.  相似文献   

9.
Currently, analytical scientists are paying special attention to reducing reliance on hazardous chemicals in various analytical methods. By embracing this concept, we developed an eco-friendly high-performancethin-layer chromatography (HPTLC) method as an alternative for the conventional HPLC method for the determination of an essential human micronutrient, niacin (NIA), which is used improve the lipid profile of patients. Furthermore, the proposed HPTLC method is capable of determining the structurally related impurities of NIA such as pyridine-2,5-dicarboxylic acid, isonicotinic acid, pyridine, and 5-ethyl-2-methylpyridine, which exhibit nephrotoxic and hepatotoxic effects. The separation of this challenging mixture was achieved on HPTLC sheets using a mixture of ethyl acetate/ethanol/ammonia solution (6:4:0.05, v/v/v), and then the dried plates were scanned at 254 nm. The analytical eco-scale assessment protocol was used to assess the greenness profile of the presented method and compare it with the reported HPLC method. The suggested method was found to be greener with regard to the consumption of solvents and the yielding of waste. The results suggest that the described method can be safely implemented for the routine analysis of NIA pharmaceutical dosage without the interference of potential impurities in quality control laboratories.  相似文献   

10.
A thin-layer chromatographic (TLC) method with densitometric quantitation using the absorption reflectance mode at 280 nm was developed and validated for the determination of chloramphenicol residues in controlling pharmaceutical equipment cleanliness. Simulated samples at residue levels 0.5, 1, and 1.2 mg/m2 were prepared by spreading the calculated amount of chloramphenicol solution on a 10 dm2 stainless steel surface. After evaporation of the solvent, the residue was removed by 2 methanol-wetted cotton swabs, which were then extracted with methanol. The extract was applied on a high-performance TLC (HPTLC) silica gel F254 plate together with standards ranging from 10 to 60 ng. Plates were developed in a horizontal developing chamber from both sides (36 applications per plate) by using n-hexane-ethyl acetate (35 + 65, v/v) as developing solvent. The mean recovery (n=6) at 1 mg/m2 was 95.8%, and the coefficient of variation was 5.8%. The absolute detection limit was 3 ng, and the quantitation limit 10 ng. The method detection limit was 0.3 mg/m2 by swabbing 2.5 dm2 and 0.075 mg/m2 by swabbing 10 dm2. Chloramphenicol was stable on the plate 2 h before and 24 h after development. Additionally, it was stable during 7 days storage on the cotton swabs in the solvent at room temperature and in diluted standard solution stored in darkness at 4 degrees C. The method can be applied to routine control of pharmaceutical equipment cleanliness by sampling from the stainless steel surface areas of 2.5 to 10 dm2, and an acceptable residue limit of 1 mg/m2.  相似文献   

11.
A rapid, simple, and sensitive RP-HPLC analytical method was developed for the simultaneous determination of triclabendazole and ivermectin in combination using a C18 RP column. The mobile phase was acetonitrile-methanol-water-acetic acid (56 + 36 + 7.5 + 0.5, v/v/v/v) at a pH of 4.35 and flow rate of 1.0 mL/min. A 245 nm UV detection wavelength was used. Complete validation, including linearity, accuracy, recovery, LOD, LOQ, precision, robustness, stability, and peak purity, was performed. The calibration curve was linear over the range 50.09-150.26 microg/mL for triclabendazole with r = 0.9999 and 27.01-81.02 microg/mL for ivermectin with r = 0.9999. Calculated LOD and LOQ for triclabendazole were 0.03 and 0.08 microg/mL, respectively, and for ivermectin 0.07 and 0.20 microg/mL, respectively. The intraday precision obtained was 98.71% with RSD of 0.87% for triclabendazole and 100.79% with RSD 0.73% for ivermectin. The interday precision obtained was 99.51% with RSD of 0.35% for triclabendazole and 100.55% with RSD of 0.59% for ivermectin. Robustness was also studied, and there was no significant variation of the system suitability of the analytical method with small changes in experimental parameters.  相似文献   

12.
A sensitive, simple, rapid, and efficient high-performance thin-layer chromatographic (HPTLC) method has been developed and validated for the analysis of berberine in marketed Ayurvedic formulations containing Berberis aristata DC for regulatory purposes. Chromatography of methanolic extracts of these formulations was performed on silica gel 60 F254 aluminum-backed TLC plates of 0.2 mm layer thickness. The plate was developed up to 66 mm with the ternary-mobile phase butanol-acetic acid-water (8 + 1 + 1, v/v/v) at 33 +/- 5 degrees C with 5 min of tank saturation. The marker, berberine, was quantified at its maximum absorbance of 350 nm. The limit of detection and limit of quantitation values were found to be 5 and 10 ng/spot. The linear regression analysis data for the calibration plot showed a good linear relationship with correlation coefficient = 0.9994 in the concentration range of 10 to 50 ng/spot for berberine with respect to peak area. The instrumental precision was found to be 0.49% coefficient of variation (CV), and repeatability of the method was 0.73% CV. Recovery values from 98.27 to 99.11% indicate excellent accuracy of the method. The developed HPTLC method is very accurate, precise, and cost-effective, and it has been successfully applied to the assay of marketed formulations containing B. aristata for determination of berberine.  相似文献   

13.
The separation of 9 organophosphates (monocrotophos, quinalphos, triazophos, parathion-methyl, isofenphos-methyl, temephos, parathion, phoxim-ethyl, and chlorpyrifos) by high-performance thin-layer chromatography (HPTLC) with automated multiple development was studied. The HPTLC method was developed and validated for analysis of residues of phoxim-ethyl and chlorpyrifos in tea. The sample was extracted with acetonitrile and cleaned up by ENVI-CARB solid-phase extraction. The extract was directly applied as bands to glass-backed silica gel 60F254 HPTLC plates. The plates were developed with dichloromethane-hexane (1 + 1, v/v) in a glass twin-trough chamber. Evaluation of the developed HPTLC plates was performed densitometrically. The results indicated that the detection limits of phoxim and chlorpyrifos were 5.0 x 10(-9) and 1.0 x 10(-8) g, respectively. Recoveries of the pesticides from tea by this analytical method were 90.7-105.5%, and relative standard deviations were 7.3-13.5%. The precision and accuracy of the method were generally satisfactory for analysis of pesticide residues in tea.  相似文献   

14.
A simple, sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for densitometric determination of moxifloxacin both as a bulk drug and from pharmaceutical formulation was developed and validated as per the International Conference on Harmonization (ICH) guidelines. The method employed TLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase and the mobile phase consisted of n-propanol-ethanol-6 M ammonia solution (4:1:2, v/v/v). Densitometric analysis of moxifloxacin was carried out in the absorbance mode at 298 nm. Compact spots for moxifloxacin were found at Rf value of 0.58 ± 0.02. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9925 in the working concentration range of 100-800 ng spot−1. The method was validated for precision, accuracy, ruggedness, robustness, specificity, recovery, limit of detection (LOD) and limit of quantitation (LOQ). The LOD and LOQ were 3.90 and 11.83 ng spot−1, respectively. Drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment and photodegradation. All the peaks of degradation products were well resolved from the standard drug with significantly different Rf values. Statistical analysis proves that the developed HPTLC method is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating one. Moreover, the proposed HPTLC method was utilized to investigate the kinetics of the acidic and alkaline degradation processes at different temperatures. Arrhenius plot was constructed and apparent pseudo-first-order rate constant, half-life and activation energy were calculated. In addition the pH-rate profile for degradation of moxifloxacin in constant ionic strength buffer solutions within the pH range 1.2-10.8 was studied.  相似文献   

15.
A high-performance thin-layer chromatographic (HPTLC) method was used to determine the glycoalkaloids alpha-solanine and alpha-chaconine in potatoes. Alpha-solanine and alpha-chaconine are extracted from dehydrated potatoes with boiling methanol-acetic acid (95 + 5, v/v). The analytes are separated on a Silica Gel 60 F254 HPTLC plate by a saturated mixture of dichloromethane-methanol-water-concentrated ammonium hydroxide (70 + 30 + 4 + 0.4, v/v), which is used for vertical development of the plate up to a distance of 85 mm. For visualization, the plate is dipped 3 times into a modified Carr-Price reagent, 20% (w/v) antimony(III) chloride in acetic acid-dichloromethane (1 + 3, v/v), and subsequently heated on a hot plate at 105 degrees C for 5 min. The glycoalkaloids all appear as red chromatographic zones on a colorless background. Densitometric quantification is performed at 507 nm by reflectance scanning. After determination of the appropriate response function, the proposed method was validated. Good results with respect to linearity, accuracy, and precision were obtained in the concentration range studied.  相似文献   

16.
A column high-performance liquid chromatography (HPLC) method was developed for the determination of glucosamine in dosage forms. Glucosamine was derivatized by addition of a solution containing orthophthaldialdehyde. The HPLC separation was achieved on a Spherimage 80 ODS2 column (250 x 4 mm id, 5 microm particle size) using an isocratic mobile phase containing phosphate buffer-methanol (90 + 10, v/v, pH 6.50) and methanol-tetrahydrofuran (97 + 3, v/v) in proportions of 85 + 15 at a flow rate of 1 mL/min, followed by fluorescence detection. The method was validated for specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The detector response for glucosamine HCI was linear over the concentration range of 0.1-20 microg/mL with a correlation coefficient of 0.9980. The accuracy was between 99.4 and 100.8%. The LOD and the LOQ were 0.009 and 0.027 microg/mL, respectively. The method was applied to determination of glucosamine in solid dosage forms.  相似文献   

17.
A molecularly imprinted polymer (MIP) able to selectively bind triclosan (TCS) and triclocarban (TCC), commonly used antibacterial agents in many consumer products, was prepared using noncovalent molecular imprinting methods. The prepared MIP was evaluated as a selective sorbent in SPE for sample cleanup before HPLC-UV analysis of TCS and TCC in soil and biosolid samples. The MIP was also compared with commercially available C18 SPE sorbent. The molecularly imprinted SPE (MISPE) developed in this study was more efficient than C18 SPE for the cleanup of extracts of soil and biosolid samples prior to the analysis of TCC and TCS using HPLC-UV. The LOQ values for both TCC and TCS in the soil samples were determined to be 40 microg/kg; in the biosolid samples, the LOQ values were 100 and 300 microg/kg for TCC and TCS, respectively. Compared to C18 SPE, using MISPE for sample cleanup may result in a significant reduction of analytical cost, because one MIP can be reused up to 35 times and HPLC-UV instead of HPLC/MS can be used for instrumental analysis following sample cleanup by MISPE.  相似文献   

18.
A densitometric high performance thin-layer chromatographic (HPTLC) method was developed and validated for quantitative analysis of L-DOPA in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone-chloroform-n-butanol-acetic acid glacial-water (60:40:40:40:35 v/v/v/v/v) as mobile phase. Quantitative analysis was carried out at a wavelength of 497 nm. The method was linear between 100 and 500 ng/microL, with a correlation coefficient of 0.999. The intra-assay variation was between 0.26 and 0.65% and the interassay was between 0.52 and 2.04%. The detection limit was 1.12 ng/microL, and the quantification limit was 3.29 ng/microL. The accuracy ranged from 100.40 to 101.09%, with a CV not higher than 1.40%. The method was successfully applied to quantify L-DOPA in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision, and accurate for the quantitative determination of L-DOPA in tablets.  相似文献   

19.
A method is described for the analysis of contaminated building dust samples and surface swab samples for octachlorodibenzo-p-dioxin (OCDD) and heptachlorodibenzo-p-dioxins (HpCDDs). The samples were analyzed by fused silica capillary GC combined with electron capture detection. Analysis was preceded by a short HPLC cleanup step designed to remove polychlorinated biphenyls (PCBs) and other compounds that might interfere. The method was found to work successfully on surface swab and dust samples known to contain PCBs, OCDD, and HpCDDs. The overall recovery of the analysis procedure for OCDD was found to be approximately 80%. The detection limit for the method was sample dependent, but for one typical set of surface swab samples was 0.2 μg/m2 of OCDD.  相似文献   

20.
A speedy and selective ultra‐HPLC‐MS/MS method for simultaneous determination of deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐ADON), 15‐ADON, nivalenol and fusarenon X in traditional Chinese medicines (TCMs) was developed. The method was based on one‐step sample cleanup using reliable homemade cleanup cartridges. A linear gradient mobile‐phase system, consisting of water containing 0.2% aqueous ammonia and acetonitrile/methanol (90:10, v/v) at a flow rate of 0.4 mL/min, and an Acquity UPLC HSS T3 column (100 mm×2.1 mm, 1.8 μm) were employed to obtain the best resolution of the target analytes. [13C15]–DON was used as the internal standard to accomplish as accurate as possible quantitation. The established method was further validated by determining the linearity (R2≥0.9990), sensitivity (LOQ, 0.29–0.99 μg/kg), recovery (88.5–119.5%) and precision (RSD≤15.8%). It was shown to be a suitable method for simultaneous determination of DON, 3‐ADON, 15‐ADON, nivalenol and fusarenon X in various TCM matrices. The utility and practical impact of the method was demonstrated using different TCM samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号