共查询到19条相似文献,搜索用时 78 毫秒
1.
聚阴离子型锂离子电池正极材料研究进展 总被引:18,自引:0,他引:18
综述了各种聚阴离子型锂离子电池正极材料的研究现状,重点对各种材料的结构和性能的关系,尤其是聚阴离子在正极材料中的作用,以及改善材料电导率的各种方法及其机理进行了总结和探讨. 相似文献
2.
3.
4.
分别采用蔗糖和乙炔黑作为碳添加剂,高温固相法合成LiFePO_4复合物,利用X射线衍射、扫描电子显微镜和充放电等测试技术对其晶体结构、表观形貌和电化学性能进行了研究。结果表明,合成的LiFePO_4均为单一的橄榄石型晶体结构。采用蔗糖包覆的LiFePO_4具有更好的电化学性能,以0.2 C充放电,首次放电比容量为148.6 mA·h/g,20次循环后放电容量仍为140.3 mA·h/g。 相似文献
5.
锂离子电池纳米正极材料 总被引:4,自引:0,他引:4
综述了锂离子电池纳米正极材料的研究进展,阐述了这种材料用于锂离子电池的优势和存在的问题,把纳米正极材料分为过渡金属嵌锂化合物、金属氧化物和金属硫化物和其它纳米正极材料。归纳了不同纳米正极材料的主要制备方法,探讨了材料的制备方法与其结构、形貌和电化学性能之间的关系,展望了纳米正极材料用于锂离子电池的未来前景。 相似文献
6.
7.
8.
9.
富锂材料xLi2MnO3·(1-x)LiMO2(0-1)和低廉的价格已引起人们的广泛兴趣. 但其首次充放电循环的较大不可逆容量损失、较差的倍率性能和循环过程的材料相变等关键问题制约了其发展. 富锂材料结构解析和充放电机理探索一直是研究的热点. 目前,富锂材料是否为固溶体仍有争论,首次充电4.5 V平台的氧流失机理已得到确认. 为了提高富锂材料的电化学性能,可从体相掺杂、表面包覆和结构形貌控制等方面对材料进行改性,其电化学性能有显著提升. 本文综述了富锂材料最新研究进展,归纳了相关制备方法,重点介绍了富锂材料的结构特点、锂嵌脱机理和改性方法,并展望了今后的研究方向. 相似文献
10.
11.
Wontae Lee Shoaib Muhammad Chernov Sergey Hayeon Lee Jaesang Yoon Yong‐Mook Kang Won‐Sub Yoon 《Angewandte Chemie (International ed. in English)》2020,59(7):2578-2605
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium‐ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next‐generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state‐of‐the‐art cathode materials are essential prerequisites. This Review presents various high‐energy cathode materials which can be used to build next‐generation lithium‐ion batteries. It includes nickel and lithium‐rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock‐salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials. 相似文献
12.
13.
二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望. 相似文献
14.
Min Wu Yi Cui Amruth Bhargav Yaroslav Losovyj Amanda Siegel Mangilal Agarwal Ying Ma Yongzhu Fu 《Angewandte Chemie (International ed. in English)》2016,55(34):10027-10031
An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi‐electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC‐MS analysis, we confirm DMTS could undergo almost a 4 e? reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g?1DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g?1, the reversible specific energy for the cell including electrolyte can be 229 Wh kg?1. This study shows organotrisulfide is a promising high‐capacity cathode material for high‐energy rechargeable lithium batteries. 相似文献
15.
16.
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。 相似文献
17.
18.
19.
Dr. Lian Shen Prof. Zhaoxiang Wang Prof. Liquan Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(39):12559-12562
Prussian blues (or iron cyanides) and their analogues are attractive in both fundamental studies and industrial applications owing to their chemical and structural diversity. The large open space in their framework provides tunnels and space for the transport and storage of lithium ions. Two Prussian blues were synthesized by a co‐precipitation method. The nanosized Fe4[Fe(CN)6]3 and cubic FeFe(CN)6 deliver reversible capacities of 95 mAh g?1 and 138 mAh g?1, respectively. In comparison, FeFe(CN)6 shows cycling and rate performances superior to Fe4[Fe(CN)6]3. 相似文献