首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large gravitational wave interferometric detectors, like Virgo and LIGO, demonstrated the capability to reach their design sensitivity, but to transform these machines into an effective observational instrument for gravitational wave astronomy a large improvement in sensitivity is required. Advanced detectors in the near future and third generation observatories in slightly more than one decade will open the possibility to perform gravitational wave astronomical observations from the Earth. An overview of the technological progress needed to realize a third generation observatory, like the Einstein Telescope (ET), and a possible evolution scenario are discussed in this paper.  相似文献   

2.
We study the use of atom interferometers as detectors for gravitational waves in the mHz–Hz frequency band, which is complementary to planned optical interferometers, such as laser interferometer gravitational wave observatories (LIGOs) and the Laser Interferometer Space Antenna (LISA). We describe an optimized atomic gravitational wave interferometric sensor (AGIS), whose sensitivity is proportional to the baseline length to power of 5/2, as opposed to the linear scaling of a more conservative design. Technical challenges are briefly discussed, as is a table-top demonstrator AGIS that is presently under construction at Berkeley. We study a range of potential sources of gravitational waves visible to AGIS, including galactic and extra-galactic binaries. Based on the predicted shot noise limited performance, AGIS should be capable of detecting type Ia supernovae precursors within 500 pc, up to 200 years beforehand. An optimized detector may be capable of detecting waves from RX J0806.3+1527.  相似文献   

3.
The dominant noises which limit the present sensitivity of the gravitational wave detectors are the thermal noise of the suspended mirrors and the shot noise. For the third generation of gravitational wave detectors as the Einstein Telescope (ET), the reduction of the shot noise implies to increase the power stored in the detector at 1 MW level and, at the same time, to compensate the huge optic distortion due to induced thermal lensing. At low temperature it is possible to reduce both these effects. However, lowering the temperature of the test masses without injecting vibration noise from the cooling system is a technological challenge. We review here the thermal noise impact on the ultimate ET sensitivity limit and we discuss possible cryogenic configurations to cool the mirror.  相似文献   

4.
本文从计算棒状引力波天线的指向性函数出发,讨论了引力波源的方位和天线棒方位之间的关系,找到了从符合实验数据求出引力波源方位以及利用单一引力波探测器对连续引力波源的定位方法。所得的结果也适用于其他形式的一维引力波天线。一旦引力波探测器的灵敏度达到足以确定引力波强度时,本文的结果无疑对引力波天文学将是很有意义的。 关键词:  相似文献   

5.
引力波的直接观测已开启引力波天文学的新篇章,爱因斯坦的百年预言终获证实。空间引力波探测器使得探测0.1 m Hz~1 Hz频段丰富的引力波源成为可能,与地面引力波探测器互为补充,才可实现更加宽广波段的引力波探测,揭开宇宙早期的更多秘密。空间激光干涉引力波探测采用外差干涉测量技术,测量间距百万公里的两自由悬浮测试质量间10 pm量级的变化量。望远镜是激光干涉测量系统的重要组成部分,1 pm的光程稳定性及苛刻的杂散光要求,不同于传统的几何成像望远镜。本文根据空间太极计划任务需求,对望远镜的功能及技术要求进行了分析,并完成了原理样机的初步方案设计,针对百万公里远场波前分布,分析了望远镜系统的敏感性,同时完成了在轨光机热集成仿真,为后面原理样机的研制奠定了技术基础。  相似文献   

6.
S.E. Strigin 《Physics letters. A》2018,382(33):2256-2258
We discuss the parametric oscillatory instability in a Fabry–Perot cavity of the Einstein Telescope. Unstable combinations of elastic and optical modes for two possible configurations of gravitational wave third-generation detector are deduced. The results are compared with the results for gravitational wave interferometers LIGO and LIGO Voyager.  相似文献   

7.
The object of this paper is to review the detector of a gravitational wave that was proposed by Braginsky and Mensky (1971). The derivation of the sensitivity is based on the same assumption as they proposed. It is concluded that the phase difference is linear in time and that the sensitivity of this detector is different from the result claimed by Braginsky and Mensky. The foundation to obtain the phase difference, i.e., the sensitivity, in this paper is not the frequency as they used but rather the movement of the wave front in the detector.  相似文献   

8.
Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal.  相似文献   

9.
Recently significant advancements have been made towards the realization of a large spherical gravitational wave detector. Research and development activities have already begun in several countries. We present here the main features and capabilities of a spherical gravitational wave detector. In particular, we discuss the interaction between a spherical antenna and cosmic rays that may require a large detector to be placed underground.  相似文献   

10.
In the next few years, we expect to see the beginning of a new branch of astronomy—gravitational wave astronomy. Space detectors, especially, will soon have the sensitivity to see the tiny changes in distance between separated masses that are produced by gravitational waves in Einstein's theory of General Relativity. One such space detector, named OMEGA, has been proposed to NASA as a future medium sized Explorer mission. This detector would be formed from six small miniprobes that are launched into high circular Earth orbit, two miniprobes at each of the vertices of a million-kilometre equilateral triangle. The probes track each other with lasers. By subtracting the measurements of the armlengths, a fine Michelson interferometer can be formed that will detect changes in distance of less than one picometre at time scales around 1000s. At this sensitivity, OMEGA will be able to detect gravitational waves from known galactic binary stars and from possible events involving the massive black holes that are expected to reside in the nuclei of many galaxies.  相似文献   

11.
理论估计传到地球上的引力波非常弱,激光干涉引力波探测器被设计用来探测引力波,在没有引力波传来时,激光干涉引力波探测器应该是零输出。为达到这样的目的,必须和众多的噪声作斗争。  相似文献   

12.
Levin J 《Physical review letters》2000,84(16):3515-3518
Spinning compact binaries are shown to be chaotic in the post-Newtonian expansion of the two-body system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely on a match between the data and a theoretical template.  相似文献   

13.
The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirror's thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17 and 18 K. The detector sensitivity, which was limited by the mirror's thermal fluctuation at room temperature, was improved in the frequency range of 90 to 240 Hz by cooling the mirrors. The improved sensitivity reached a maximum of 2.2×10(-19) m/√Hz at 165 Hz.  相似文献   

14.
A method of enhancing the sensitivity of laser gravitational antennas based on tracking of the velocity of the antenna reflectors instead of conventional tracking of their displacement is considered. This method allows one to overcome the standard quantum detection limit for a weak force. An optical scheme of a gravitational wave detector on the basis of a speed meter is considered. The formulas for the limiting sensitivity of the given scheme taking optical losses into account are obtained. The possibility of realizing the considered measurement method in presently existing laser gravitational antennas is analyzed.  相似文献   

15.
Along with the development of the interferometric gravitational wave detector, we enter into an epoch of the gravitational wave astronomy, which will open a brand new window for astrophysics to observe our universe. However, the gravitational wave detection is a typical weak signal detection, and this weak signal is buried in a strong instrument noise. To our knowledge, almost all of the data analysis methods in gravitational wave detection at present are based on a matched filtering. So it is desirable to take advantage of stochastic resonance methods. However, the all of the stochastic resonance methods are general based on a Fourier transformation and fall short of the matched filtering as a usable technique. In this paper we relate the stochastic resonance to the matched filtering. Our results show that the stochastic resonance can indeed be combined with the matched filtering for both the periodic and the non-periodic input signal. This encouraging result will be the first step to apply the stochastic resonance to the matched filtering in gravitational wave detection. Moreover, based on the matched filtering, we firstly propose a novel measurement method for the stochastic resonance which is valid for both the periodic and the non-periodic driven signal.  相似文献   

16.
In this paper,we discuss the coefficients of Gravitational waveform due to eccentric binaries periastron advance with evolved eccentricity.For the basic harmonic modes(n ≤ 5),the frequency split and corresponding relative strengths in the spectrum are figured out.Taking the well known binary systems PSRB 1913+16 and PSRB 1534+12 as examples,we study the dominant harmonic and its frequency split caused by periastron advance in the spectra,and give an estimation of detectability for PSRB 1913+16 and PSRB 1534+12,which are the promising targets for space observatories of gravitational wave.  相似文献   

17.
We present a detailed analysis of the effect of the gravitational field generated by a small rotating quadrupole on a graviational wave antenna and we report on the preliminary measurement of this effect on the Explorer 2270 kg cryogenic gravitational wave antenna of the Rome group. The induced signal had an amplitude twenty times larger than the detector noise when the antenna was equipped with an FET amplifier and was easily detected without requiring integration in time. We remark that with this method we were able to make an absolute calibration of a gravitational wave antenna.  相似文献   

18.
Resonant gravitational wave detectors with an observation bandwidth of tens of hertz are a reality: the antenna Explorer, operated at CERN by the ROG Collaboration, has been upgraded with a new readout. In this new configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz about its center operating frequency of 919 Hz the spectral sensitivity is better than 10(-20) Hz(-1/2). We describe the detector and its sensitivity and discuss the foreseeable upgrades to even larger bandwidths.  相似文献   

19.
A three-arm Michelson-Fabry-Perot detector for gravitational waves is designed.It consists of three MichelsonFabry-Perot interferometers,one for each pair of arms.The new detector can be used to confirm whether the gravitational waves are in general relativity polarization states and to set the strong constraints on non-GR gravitational wave polarization states.By the new detectors,the angular resolution of sources can be improved significantly.With the new detector,it is easier to search for and confirm a gravitational wave signal in the observation data.  相似文献   

20.
V.I. Lazebny 《Physics letters. A》2008,372(44):6545-6550
We analyze the measurement of small variations of distance between the mirrors of long Fabry-Perot cavity (model of gravitational wave detector) applying optical variant of displacement transformer. We show that using optical rigidity and manipulating the parameters of displacement transformer we can overcome Standard Quantum Limit (SQL) sensitivity without increasing laser pumping. The scheme analyzed has an additional potential of changing the shape of sensitivity curve over a wide range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号