首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the influence of KOH activation on the surface chemistry of activated carbons (ACs) synthesized from polystyrene-based cation exchangeable resin (PSI) has been investigated. The surface chemistry of ACs has been characterized by using Fourier transformed infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), pH measurement, and Boehm's titration method. As a result, PSI can be successfully converted into ACs with high porosities. The total oxygen content on the ACs studied increases with increasing the KOH-to-PSI ratio. FT-IR and XPS analyses show that the resulting carbons possess a number of oxygen surface functional groups, such as carbonyl, quinone, phenol, ether, and carboxylic acid groups. The highest oxygen content and acid value are observed at a KOH-to-PSI ratio of 4 (KPS-4). However, its pH and surface basicity are higher than those of a KOH-to-PSI ratio of 2 (KPS-2), indicating the formation of basic species, such as quinone and pyrone groups. Although the oxygen-containing groups with basic character exist in the resulting carbons, all the samples are still acidic in character.  相似文献   

2.
以无灰煤(HyperCoal)为原料,KOH和CaCO3为活化剂制备了煤基活性炭,采用低温N2吸附法表征了活性炭的比表面积和孔结构,测定了活性炭用作双电层电容器(EDLC)电极材料的电化学性能。考察了炭化温度、活化温度、活化时间和活化剂对活性炭电容特性的影响。研究结果表明,比表面积和比电容随着炭化温度的升高而降低,活化温度过高或活化时间太长对比电容有不利影响。此外,CaCO3影响活化过程中孔的开发,显著降低所制备活性炭的比表面积和比电容。在炭化温度为500℃、活化温度为800℃、KOH与焦的质量比为4∶1和活化时间2 h下所得活性炭的比表面积和总孔容分别达到2 540 m2/g和1.65 cm3/g,该活性炭电极在0.5 mol/L TEABF4/PC电解液中的比电容达到最大值46.0 F/g。  相似文献   

3.
Activated carbons (ACs) are prepared from vine shoots (VS) by the method of physical activation in air, CO2 and steam atmospheres and by the method of chemical activation with H3PO4, ZnCl2 and KOH aqueous solutions. The ACs were characterized texturally by N2 adsorption at −196 °C, mercury porosimetry, and density measurements. The method of chemical activation has been proved to be more effective than the method of physical activation to prepare ACs with a well-developed porosity. ACs with high micro- and mesopore volumes are prepared with ZnCl2 and H3PO4. Using ZnCl2, the volume of micropores is 0.62 cm3 g−1 and the volume of mesopores is 0.81 cm3 g−1. A greater development of macroporosity is obtained by KOH activation. The volume of macropores is as high as 1.13 cm3 g−1 for the resulting AC. Yield of the process of preparation of the ACs is low for the method of chemical activation. Some insights into the performance of the activating agents in the activation process are provided.  相似文献   

4.
In this work, glass-fiber-supported activated carbons (GFACs) were prepared by KOH activation using phenolic resin. Two different preparation methods were chosen: (a) filling and (b) impregnation methods. The structural properties of the GFACs studied were characterized by using N2 adsorption isotherms at 77 K and transformed models, such as the DR equation and the alphas-plot. A scanning electron microscope (SEM) was also used to investigate the external pore structure of the resulting carbons. The specific surface areas and pore volumes for both methods increased with increasing content of KOH. However, the pore evolution for the filling method was superior to that for the impregnation method. DR plots for all samples showed a good linearity at low relative pressure. Also, all samples displayed a slight upward deviation at the linear portion of the alphas-plots, indicating the presence of mesopores and external surface area. SEM studies showed that GFACs possessed a well-developed pore structure and exhibited a change in the pore evolution according to the preparation conditions.  相似文献   

5.
Chemical activation of carbon mesophase pitches   总被引:10,自引:0,他引:10  
This paper studies the chemical activation of mesophase pitches of different origins in order to obtain activated carbons suitable for use as electrodes in supercapacitors. The effect that the activating agent (NaOH, LiOH, and KOH), the alkaline hydroxide/pitch ratio, and the activation temperature had on the characteristics of the resultant activated carbons was studied. LiOH was found to be a noneffective activating agent, while activation with NaOH and KOH yielded activated carbons with high apparent surface areas and pore volumes. The increase of the KOH/pitch ratio caused an increase of the chemical attack on the carbon, producing higher burnoffs and development of porosity. Extremely high apparent surface areas were obtained when the petroleum pitch was activated with 5:1 KOH/carbon ratio. The increase of the activation temperature caused an increase of the burnoff, although the differences were not as significant as those derived from the use of different proportions of activating agent.  相似文献   

6.
Activated carbons (Acs) were prepared by pyrolysis of coffee bean husks in presence of phosphoric acid (chemical activities). Husks from Colombian coffee beans were impregnated with aqueous solutions of H3PO4 following a variant of the incipient wetness method. Diffenent concentrations were used to produce impregnation ratios of 30, 60, 100 and 150 wt.%. Activation was carried out under argon flow by heating to 723 K with 1 h soaking time. The porous texture of the obtained ACs was characterized by physical adsorptions of N2 at 77 K and CO2 at 273 K. The impregnation ration had a strong influence on the pore structure of these Acs, which could be easily controlled by simply varying the proportion of H3PO4 used in the activation. Thus, low impregnation ratio led to essentially microporous Acs. At intermediate impregnation ratios, ACs with wider pore size distribution (from micropores to mesopores) were obtained. Finally, high impregnation ratios yielded essentially mesoporous carbons with high surface area and pore volume.  相似文献   

7.
Highly porous carbons have been prepared by the chemical activation of two mesoporous carbons obtained by using hexagonal- (SBA-15) and cubic (KIT-6)-ordered mesostructured silica as hard templates. These materials were investigated as sorbents for CO(2) capture. The activation process was carried out with KOH at different temperatures in the 600-800°C range. Textural characterization of these activated carbons shows that they have a dual porosity made up of mesopores derived from the templated carbons and micropores generated during the chemical activation step. As a result of the activation process, there is an increase in the surface area and pore volume from 1020 m(2)g(-1) and 0.91 cm(3)g(-1) for the CMK-8 carbon to a maximum of 2660 m(2)g(-1) and 1.38 cm(3)g(-1) for a sample activated at 800°C (KOH/CMK-8 mass ratio of 4). Irrespective of the type of templated carbon used as precursor or the operational conditions used for the synthesis, the activated samples exhibit similar CO(2) uptake capacities, of around 3.2 mmol CO(2)g(-1) at 25°C. The CO(2) capture capacity seems to depend on the presence of narrow micropores (<1 nm) rather than on the surface area or pore volume of activated carbons. Furthermore, it was found that these porous carbons exhibit a high CO(2) adsorption rate, a good selectivity for CO(2)-N(2) separation and they can be easily regenerated.  相似文献   

8.
Fir wood was first carbonized for 1.5 h at 450 degrees C, then soaked in a KOH solution KOH/char ratio of 1, and last activated for 1 h at 780 degrees C. During the last hour CO2 was poured in for further activation for 0, 15, 30, and 60 min, respectively. Carbonaceous adsorbents with controllable surface area and pore structure were chemically activated from carbonized fir wood (i.e., char) by KOH etching and CO2 gasification. The pore properties, including the BET surface area, pore volume, pore size distribution, and pore diameter, of these activated carbons were first characterized by the t-plot method based on N2 adsorption isotherms. Fir-wood carbon activated with CO2 gasification from 0 to 60 min exhibited a BET surface area ranging from 1371 to 2821 m2 g(-1), with a pore volume significantly increased from 0.81 to 1.73 m2 g(-1). Scanning electron microscopic (SEM) results showed that the surfaces of honeycombed holes in these carbons were significantly different from those of carbons without CO2 gasification. The adsorption of methylene blue, basic brown 1, acid blue 74, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water on all the carbons studied was examined to check their chemical characteristics. Adsorption kinetics was in agreement with the Elovich equation, and all equilibrium isotherms were in agreement with the Langmuir equation. These results were used to compare the Elovich parameter (1/b) and the adsorption quantity of the unit area (q(mon)/Sp) of activated carbons with different CO2 gasification durations. This work facilitated the preparation of activated carbon by effectively controlling pore structures and the adsorption performance of the activated carbon on adsorbates of different molecular forms.  相似文献   

9.
研究了以木质活性炭颗粒为原料, 通过KOH再活化的方法制备多微孔活性炭的方法。考察了活性炭和KOH的最佳质量比例, 并通过低温氮吸附、SEM、XRD等手段表征了样品的比表面、孔结构、孔分布、颗粒形貌和晶体结构;通过对含间二甲苯50 mg·L-1的气流的吸附实验表征了所制备活性炭的二甲苯去除能力, 实验结果表明, 经过KOH再活化显著调高了样品的间二甲苯吸附容量, 这很可能和样品中发达的微孔结构有关。  相似文献   

10.
研究了以木质活性炭颗粒为原料,通过KOH再活化的方法制备多微孔活性炭的方法。考察了活性炭和KOH的最佳质量比例,并通过低温氮吸附、SEM、XRD等手段表征了样品的比表面、孔结构、孔分布、颗粒形貌和晶体结构;通过对含间二甲苯50mg.L-1的气流的吸附实验表征了所制备活性炭的二甲苯去除能力,实验结果表明,经过KOH再活化显著调高了样品的间二甲苯吸附容量,这很可能和样品中发达的微孔结构有关。  相似文献   

11.
Activated carbons for electrochemical capacitor electrodes are prepared from soyabean using chemical activation with KOH. The pore size is easily controllable by changing the mass ratio between KOH and carbonized product. The as-prepared materials possess a large specific surface area, unique structure, well- developed hierarchical porosity and plentiful heteroatoms(mainly O and N). Thus resulted in its high specific capacitance,good rate capacity and cycling stability. Moreover, attributing to worldwide availability, renewable nature and low-cost, activated carbon prepared from soyabean has a good potential in energy conversion and storage devices.  相似文献   

12.
Activated carbons (ACs) for electric double layer capacitors (EDLCs) were fabricated from waste tea leaves, activated with the pore-forming substances ZnCl2 then, carbonized at high-temperature in N2 atmosphere. The surface texture and porosity of the ACs were determined using transmission electron micros-copy and N2 adsorption/desorption studies. The surface area of the 20 wt % ZnCl2 treated sample was found to be 1029 m2g?1 and had a distribution of micropores and mesopores. The electrochemical properties of the ACs were evaluated by using cyclic voltammetry and galvanostatic charge-discharge studies. ACs from waste tea leaves exhibited excellent specific capacitance as high as 196 F g?1 in the 0.1 M Na2SO4 neutral electrolyte, with rectangular-like cyclic voltammetry curves at a cell potential of 1.5 V and good cyclability with a capacitance retention of 95% at a high current density of 100 mA g?1 for 2000 cycles. The results show that the pore texture properties and specific surface area of ACs are dominated by changing carbonization temperature and the amount of activating agent ZnCl2. The electrochemical performance is influenced mainly by surface area, but the pore size distribution becomes a dominating factor for specific capacitance of a carbon electrode material when the pore structure is in range of micropores/mesopores.  相似文献   

13.
A novel corn grain precursor was used for the preparation of activated carbon by chemical activation. The detailed investigation of the porosity development in the prepared activated carbon was done by altering the various activation conditions such as the activation temperature, activation time and ratio between the powdered form of carbonized corn grain char and KOH. The surface characteristics including the surface roughness of all the activated carbon samples were evaluated from the analysis of nitrogen (N2) adsorption isotherm data. At the maximum of 2978 m2/g, a super surface area having the corn grain‐based activated carbon (CG‐AC) was synthesized by using the following conditions: 1/4 ratio of powdered form of carbonized corn grain char/KOH; 800 °C; and 4 h. The possibility of preparing highly porous activated carbons with controlled porosity by varying different activation conditions was found from the pore size distribution results. In particular, the domination of the ratio between the powdered form of carbonized corn grain char and KOH on the porosity development was high compared to the activation temperature and activation time. In addition, the surface roughness calculated from the surface fractal dimension indicates the decrease of surface roughness with increasing activation conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
IntroductionElectric double layer capacitors( EDLCs) witha high power density can be used as memory back-up devices or electric vehicles.EDLCs store energyin the electric double layer by charge accumulationon the interface between the electrode and the elec-trolyte. In order to obtain reasonable energies andpower densities,the more suitable material forEDLCs musthave a high surface area with a signif-icant value of specific double layer capacitance,better pore size distribution and electro…  相似文献   

15.
Carbonaceous adsorbents with controllable surface area were chemically activated with KOH at 780 degrees C from chars that were carbonized from corncobs at 450 degrees C. The pore properties, including BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons, were characterized by the t-plot method based on N(2) adsorption isotherms. Two groups are classified according to the types of adsorption/desorption isotherms. Group I corncob-derived activated carbons, with KOH/char ratios from 0.5 to 2, exhibited BET surface area ranging from 841 to 1221 m(2)/g. Group II corncob-derived activated carbons, with KOH/char rations from 3 to 6, showed high BET surface areas, from 1976 to 2595 m(2)/g. From scanning electron microscopic (SEM) results, the surface morphology of honeycombed holes on corncob-derived activated carbons was significantly influenced by the KOH/char ratios. The adsorption kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water at 30 degrees C were studied on the two groups of activated carbons, which were suitably described by two simplified kinetic models, pseudo-first-order and pseudo-second-order equations. The effective particle diffusivities of phenols and dyes at the corncob-derived activated carbons of group II are higher than those of ordinary activated carbons. The high-surface-area activated carbons were demonstrated to be promising adsorbents for pollution control and for other applications.  相似文献   

16.
戴啟文  王丰  王吉德  王璐 《化学通报》2017,80(8):751-759
以水蒸汽活化的两种活性炭为载体,采用等体积浸渍法制备了一系列Bi/AC催化剂,考察了其乙炔氢氯化反应的催化性能。分别通过氮气吸附脱附实验(BET),扫描电子显微镜(SEM),傅里叶变换红外(FTIR),透射电子显微镜(TEM),X射线粉末衍射(XRD),X射线光电子能谱(XPS)和热重分析(TGA)对活性炭和催化剂进行表征。结果表明:(1)水蒸汽活化重整了活性炭的孔径和孔道,尤其是介孔材质活性炭,增加了其比表面积,形成了新的微孔结构。(2)积碳是Bi/AC催化剂失活的主要原因,水蒸汽活化抑制了积碳,并增加了BiOCl的结晶度和分散性,提高了乙炔氢氯化反应的催化性能。  相似文献   

17.
The composition, structure, and adsorption behavior of activated carbons (ACs) derived from three different types of waste polymers, i.e., tire rubber (TR), polyvinyl chloride (PVC), and polyethyleneterephtalate (PET), by KOH activation were compared. The AC derived from PET exhibited the largest surface area (2831 m(2)/g) and pore volume (1.68 cm(3)/g) due to the homogenous aromatic composition of PET. The AC derived from PVC exhibited relatively lower surface area (2666 m(2)/g) but more narrowed pore size distribution (2-3 nm). The complex composition and high ash content of tire particles resulted in AC product with significantly lower surface area (398.5 m(2)/g) and heterogeneous pore width. Adsorption data of methylene blue (MB) were fitted well by Langmuir equation, indicating monolayer coverage on the ACs. The high oxygen content of PET-derived AC heavily affected its adsorption to MB and iodine. Due to the remarkable surface area and highly mesoporous structures, ACs based on both PET and PVC exhibited much higher adsorption capacities than that of TR and commercial coal-based AC (F400). This study demonstrates that the properties of ACs are highly dependent on their starting polymers and the potential of converting synthetic polymer waste into effective adsorbents for environmental remediation and cleanup.  相似文献   

18.
Three sets of activated carbons (ACs) were prepared with the same precursor but activated differently (by CO2 or water vapour) with various burn-off levels. The ACs demonstrate increased deviation of the pore shape from the slitshaped model with increasing burn-off and contributions of pores of different sizes depending on the activation type. Significant re-arrangement of adsorption complexes, especially of the Van der Waals type characteristic for nonpolar or weakly polar adsorbates (H2, CH4, CH2Cl2, CHCl3), occurs in both micropores and mesopores of ACs with decreasing temperature. The behaviour of their mixtures with water and DMSO can strongly differ from that of individual adsorbates.  相似文献   

19.
The adsorption of mercury from a single/multi-solute aqueous solution by activated carbon (AC) prepared from cherry stones (CS) by chemical activation with H3PO4, ZnCl2 or KOH is studied. Three series of AC (i.e., P, H3PO4; Z, ZnCl2; K, KOH) were prepared by controlling the impregnation ratio and carbonization temperature. The textural characterization of AC was carried out by gas adsorption, mercury porosimetry and density measurements. The surface chemistry was analyzed by the pH of the point of zero charge (pHzpc), FT-IR spectroscopy and Boehm’s method. Experiments of mercury adsorption were conducted by the batch method, using aqueous solutions of mercury and of mercury, cadmium and zinc without pH adjustment. The ACs possess a wide range of pore volumes and sizes. Their microporosity is usually well developed. The meso- and macropore volumes are higher for the P carbons and K carbons, respectively. BET surface areas as a rule range between 1000 and 2000 m2?g?1. The pHzpc is much lower for the P carbons. The content of acidic oxygen surface groups is lower for the K carbons, whereas the content of basic groups is higher for these carbons. The kinetics of the adsorption process of mercury is faster for ACs with high volumes of large size pores. However, the surface groups have a marked unfavorable influence on the kinetics. The pseudo-second order rate constant (k2×10?3, g/mol?h) is higher by the order Z-4-800 (67.69)>K-3-800 (43.45)>P-3.44-400 (36.98). The incorporation of zinc and cadmium to the mercury solution usually decelerates the adsorption process for the P carbons and Z carbons and accelerates it for the K carbons. The amount adsorbed of mercury is much larger for the K carbons than for the other ACs. For the Z carbons, competition effects of zinc and cadmium on the adsorption of mercury are negligible, which indicates that mercury adsorbs specifically on surface active sites of these adsorbents.  相似文献   

20.
In this work, activated carbons (ACs) are obtained from petroleum pitch by the combination of a chemical treatment with different potassium permanganate (KMnO4) amounts, i.e., 0, 0.5, 1.0, and 2.0 g, and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The effects of the chemical activating agent on the surface morphology and porosity are evaluated with scanning electron microscopy and N2 adsorption isotherms at 77 K, respectively. The specific surface area of the pitch-based ACs is increased with increasing the amount of KMnO4 pre-treatment and showed the highest value of 2,334 m2 g?1 at 2 g of KMnO4 amount. The electrochemical performance of AC electrodes is examined by cyclic voltammetry and galvanostatic charge/discharge characteristics in 6 M KOH electrolyte. Among the prepared ACs, 2.0 K-ACs possesses a specific capacitance as high as 237 F g?1 and showed excellent electrochemical performance due to its suitable porous structure and low interface resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号