首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 62 毫秒
1.
磁致旋光增强效应与微量样品旋光检测方法   总被引:3,自引:0,他引:3  
微流控光学检测系统的微型化和集成化是微流控技术的发展趋势,微量液体物质的旋光检测也是微流控光学技术的重要研究课题之一.分析了内含磁致旋光介质的旋光反射腔的偏光特性,理论预言这种旋光反射腔具有旋光增强效应,在此基础上提出了微量样品的旋光增强检测方法和器件设计原理.研究结果表明,该方法可以在小光程限制条件下显著提高磁旋光介质的检测灵敏度.在不考虑样品吸收的情况下.旋光增强法与普通消光法的检测灵敏度之比的极限约为78.5.该方法可以应用于微流控系统的旋光检测以及实现磁旋光仪器的小型化和微型化.  相似文献   

2.
设计和研制了一种用于溶液样品光学特性原位检测的高压光学样品池成套系统,组件包括手动泵、增压器和高压样品池。其中样品池开有3处光学窗口,以水为传压介质,设计的最高使用压力为600MPa。当用JGS1石英作窗口时,密封和保压效果良好;由于受到石英材质强度的限制,使用压力应控制在300MPa以下。为检验该系统在高压原位检测方面应用的可行性,进行了色氨酸高压荧光光谱的采集。  相似文献   

3.
石英增强光声光谱(QEPAS)是近年来发展起来的一种痕量气体探测技术,具有系统体积小、价格低廉、探测灵敏度高等优点。乙炔(C2H2)是一种化学性质活泼的有毒气体,对它进行高灵敏度检测在变压器故障诊断、环境监测等领域有着重要的意义,基于此,采用QEPAS技术对C2H2微量气体展开高灵敏度检测研究。采用输出波长为1.53 μm的连续波分布反馈半导体激光器作为激发光源。为了提高信噪比和简化数据处理过程,QEPAS传感器系统采用波长调制和2次谐波探测技术。为了提高QEPAS系统信号幅值,相比于常见的共振频率为32.768 kHz的石英音叉,采用了共振频率较低的30.72 kHz石英音叉作为声波传导器,同时还优化了石英音叉与激光束的空间位置、激光波长调制深度,并添加了声波微共振腔,选择的微共振腔长度为4 mm、内径为0.5 mm,最终获得了2.7 ppm的优异检测极限,归一化噪声等效吸收系数为1.3×10-8 cm-1·W·Hz-1/2。  相似文献   

4.
发展了一种先进的微生物芯片检测方法,并研制用于芯片检测的新型数字化成像扫描检测系统。采用激光诱导荧光的检测原理设计一种新颖的CCD数字化成像扫描检测系统结构,荧光信号采集端的数值孔径NA=0.72,工作距离3.22 mm,系统检测灵敏度小于每平方微米1个荧光分子。以微生物大肠杆菌和黄单胞菌检测为例,设计基因芯片,并应用所研制的芯片检测系统实现了微生物的正确鉴定,提供了一种高效的食品安全检测整体解决方法。实验结果表明两种微生物的芯片检测实验结果稳定可靠,与国外共焦扫描仪检测的结果完全一致。  相似文献   

5.
建立了CO2激光器辐照微量爆炸物温升分布三维模型,对激光辐照过程和冷却过程中8~14μm和3~5μm波段内的目标表面辐射温度变化特性分别进行分析.利用设计的探测系统对目标进行初步探测,用8~14μm和3~5μm热像设备对目标进行观察分析.研究表明:在10.6μm激光照射过程中,8~14μm波段内沾有TNT目标的辐射温度分别由TNT、基底在8~14μm波段的发射率和对激光辐照的反射率共同决定;在3~5μm内目标辐射温度主要由TNT、基底在3~5μm波段的自身发射率决定.在探测过程中,8~14μm波段内沾染TNT区域的辐射温度明显高于周围区域,而在3~5μm波段内,目标表面辐射温度整体下降,并且沾染区域的辐射温度变得低于周围.  相似文献   

6.
表面增强拉曼散射(SERS)是一种无损、高灵敏、快速检测痕量重金属离子的光谱技术。通过调控和优化纳米结构图案和尺寸可显著增强局域表面等离子体共振(LSPR)与表面等离子体激元(SPP)的耦合以提升电磁场强度,是获得高性能SERS芯片的重要新途径。提出一种用于检测痕量汞离子的新型金属/介质三维周期纳米结构高性能SERS芯片。利用新型应力分化式双层模板纳米压印方法实现了大面积高均一纳米结构SERS芯片的低成本、批量制备。该芯片成功用于痕量汞离子的高灵敏快速检测。采用有限元方法对压印过程界面微区应力进行模拟,通过调控压印模板纵向结构和横向尺寸对模板进行设计。模拟结果表明,纵向有台阶结构的双层模板图案区域呈现高、低两个应力分区,其中,高应力区占图案~72%的面积,其应力均匀性比单层模板提升17%;低应力区分布在图案边缘~28%的区域,可有效减小脱模切应力。当模板横向尺寸从15 mm缩减至7 mm,界面应力整体提升1~2个数量级,将显著提高压印成功率。使用不同横向尺寸的单、双层模板进行压印实验结果表明,尺寸为7 mm的压力分化式双层模板实现了大面积高均一纳米结构的高质量制备,这与模拟结果高度一致。在压印胶纳米结构上构筑金纳米颗粒得到金属/介质三维周期纳米结构SERS芯片。此芯片对罗丹明6G分子的检测极限为2.08×10-12 mol·L-1,增强因子达3×108,检测均一性RSD为8.07%。该芯片对汞离子的探测限浓度仅为10 ppt(5.0×10-11 mol·L-1),浓度线性工作范围为5.0×10-11~5.0×10-5 mol·L-1,跨度达6个数量级,呈现良好的线性关系(R2=0.966),在目前汞离子检测技术中具有显著优势。提出一种通用的高灵敏快速检测痕量物质的SERS芯片设计和制备方法。这种基于光学原理芯片“结构设计-批量制备-实际应用”的研究范式将连接芯片设计和批量制备两个关键点,推动其实际应用。  相似文献   

7.
Developments of the high field ESR system in Kobe University is presented. Using Gunn oscillators and backward traveling oscillators (BWO), we can cover the frequency region from 30 to 1183.6 GHz with the use of InSb detector. Pulsed magnetic field up to 30 T is available and we are now trying to extend the field up to 40 T. Temperature range is from 1.8 to 300 K. Using this system, we studied S=1/2 ladder like system Cu2(C5H12N2)2Cl4, and found a new magnetic transition at 10.1 T at 1.8 K. The temperature dependence of ESR in Cu2(C5H12N2)2CI4 shows g-shift below 8 K which corresponds to the maximum of the magnetic susceptibility. The g-shift below 8 K suggests the increase of the quantum fluctuation in the system, and the role of the quantum fluctuation in Cu2(C5H12N2)2CI4 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号