首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The excited-state proton-transfer dynamics of 7-azaindole occurring in the water nanopools of reverse micelles has been investigated by measuring time-resolved fluorescence spectra and kinetics, as well as static absorption and emission spectra, with varying water content and isotope. 7-Azaindole molecules are found to exist in the bound-water regions of reverse micelles. The rate constant and the kinetic isotope effect of proton transfer are smaller than those in bulk water although both increase with the size of the water nanopool. The retardation of proton transfer in the bound regions is attributed to the increased free energy of prerequisite solvation to form a cyclically H-bonded 1:1 7-azaindole/water complex.  相似文献   

2.
The excited-state double proton transfer of model DNA base pairs, 7-azaindole (7AI) dimers, is explored in a low-temperature organic glass of n-dodecane using picosecond time-resolved fluorescence spectroscopy. Reaction mechanisms are found to depend on the conformations of 7AI dimers at the moment of excitation; whereas planar conformers tautomerize rapidly (<10 ps), twisted conformers undergo double proton transfer to form tautomeric dimers on the time scale of 250 ps at 8 K. The proton transfer is found to consist of two orthogonal steps: precursor-configurational optimization and intrinsic proton transfer via tunneling. The rate is almost isotope independent at cryogenic temperatures because configurational optimization is the rate-determining step of the overall proton transfer. This optimization is assisted by lattice vibrations below 150 K or by librational motions above 150 K.  相似文献   

3.
Electronic, vibrational, and electronic vibrational spectra of the 7-azaindole dimer, the 7-azaindole complex with a water molecule, and their tautomers are calculated. Transition states are considered based on the analysis of frequencies and shapes of low-frequency vibrations and the Mulliken charge redistribution. The performed quantum chemical calculation of chemical reactions enabled the determination of the structure of transition states and proton transfer conditions. It is shown that in the 7-AzI dimer the proton transfer has a character consistent with the formation of a zwitterionic form. The structure of excited states is calculated and the fluorescence spectra of the first electronic transitions that can be used as a criterion of the formation of 7-AzI tautomers as a result of chemical reactions proceeding through a proton transfer in the 7-azaindole dimer and the 7-azaindole complex with a water molecule, are interpreted.  相似文献   

4.
Abstract— The fluorescence spectrum of 7-azaindole in alcohol is composed of two fluorescence bands. Effects of pH, temperature and solvent deuteration on the fluorescence spectra and quantum yields of 7-azaindole and other model compounds in ethanol and in water are reported. The long wavelength band arises from a tautomeric species formed in an adiabatic photoreaction involving double proton transfer between one molecule of 7-azaindole and one molecule of alcohol.
The fluorescence spectrum of 7-azaindole in water is composed of only one band, but the emission is weak and shows a large solvent isotope effect. The possibility of a double proton transfer reaction between 7-azaindole and water is discussed.  相似文献   

5.
The concerted double proton transfer undergone by the C(2)(h) dimer of 7-azaindole upon electronic excitation has also been reported to occur in 3-methyl-7-azaindole monocrystals and in dimers of this compound under free-jet conditions. However, the results obtained in this work for the 3-methyl-7-azaindole dimer formed in a 10(-4) M solution of the compound in 2-methylbutane suggest that the dimer produces no fluorescent signal consistent with a double proton transfer in the liquid phase or in a matrix. In this paper, the spectroscopic behavior of the doubly hydrogen bonded dimer of 3-methyl-7-azaindole is shown to provide a prominent example of molecular symmetry control over the spectroscopy of a substance. This interpretation opens up a new, interesting research avenue for exploring the ability of molecular symmetry to switch between proton-transfer mechanisms. It should be noted that symmetry changes in the 3-methyl-7-azaindole dimer are caused by an out-of-phase internal rotation of the two methyl groups.  相似文献   

6.
Ultrafast excited-state intermolecular proton transfer (PT) reactions in 7-azaindole(methanol)(n) (n = 1-3) [7AI(MeOH)(n=1-3)] complexes were performed using dynamics simulations. These complexes were first optimized at the RI-ADC(2)/SVP-SV(P) level in the gas phase. The ground-state structures with the lowest energy were also investigated and presented. On-the-fly dynamics simulations for the first-excited state were employed to investigate reaction mechanisms and time evolution of PT processes. The PT characteristics of the reactions were confirmed by the nonexistence of crossings between S(ππ*) and S(πσ*) states. Excited-state dynamics results for all complexes exhibit excited-state multiple-proton transfer (ESmultiPT) reactions via methanol molecules along an intermolecular hydrogen-bonded network. In particular, the two methanol molecules of a 7AI(MeOH)(2) cluster assist the excited-state triple-proton transfer (ESTPT) reaction effectively with highest probability of PT.  相似文献   

7.
The excited-state tautomerization of 7-azaindole (7AI) complexes bonded with either one or two methanol molecule(s) was studied by systematic quantum mechanical calculations in the gas phases. Electronic structures and energies for the reactant, transition state (TS), and product were computed at the complete active space self-consistent field (CASSCF) levels with the second-order multireference perturbation theory (MRPT2) to consider the dynamic electron correlation. The time-dependent density functional theory (TDDFT) was also used for comparison. The excited-state double proton transfer (ESDPT) in 7AI-CH(3)OH occurs in a concerted but asynchronous mechanism. Similarly, such paths are also found in the two transition states during the excited-state triple proton transfer (ESTPT) of the 7AI-(CH(3)OH)(2) complex. In the first TS, the pyrrole ring proton first migrated to methanol, while in the second the methanol proton moved first to the pyridine ring. The CASSCF level with the MRPT2 correction showed that the former path was much preferable to the latter, and the ESDPT is much slower than the ESTPT. Additionally, the vibrational-mode enhanced tautomerization in the 7AI-(CH(3)OH)(2) complex was also studied. We found that the excitation of the low-frequency mode shortens the reaction path to increase the tautomerization rate. Overall, most TDDFT methods used in this study predicted different TS structures and barriers from the CASSCF methods with MRPT2 corrections.  相似文献   

8.
The molecular structure and properties of 7-azaindole in its first four singlet states were studied with a view to improving current understanding of the photophysical behavior of its C(2h) dimer. This dimer, which exhibits a double proton transfer via its two hydrogen bonds upon electronic excitation, has for 35 years been used as a model for the photophysical behavior of DNA base pairs. Electronic excitation of 7-azaindole simultaneously increases its acidity and basicity; these changes facilitate a concerted mechanism for the double proton transfer in the dimer. In this work, we found the acidity and basicity changes to occur only in its first pi,pi(*) excited singlet state.  相似文献   

9.
The dramatic impact of differing environments on proton transfer dynamics of the photoacid HPTS prompted us to investigate these systems with two highly complementary methods: ultrafast time-resolved transient absorption and two-dimensional NMR spectroscopies. Both ultrafast time-resolved transient absorption spectroscopy and time-resolved anisotropy decays demonstrate the proton transfer dynamics depend intimately on the specific reverse micellar system. For w(0) = 10 reverse micelles formed with anionic AOT surfactant, the HPTS proton transfer dynamics are similar to dynamics in bulk aqueous solution, and the corresponding (1)H 2D NOESY NMR spectra display no cross peaks between HPTS and AOT consistent with the HPTS residing well hydrated by water in the interior of the reverse micelle water pool. In contrast, ultrafast transient absorption experiments show no evidence for HPTS photoinduced proton transfer reaction in reverse micelles formed with the cationic CTAB surfactant. In CTAB reverse micelles, clear cross peaks between HPTS and CTAB in the 2D NMR spectra show that HPTS embeds in the interface. These results indicate that the environment strongly impacts the proton transfer reaction and that complementary experimental techniques develop understanding of how location critically affects molecular responses.  相似文献   

10.
The paper is concerned with the deposition of self-assembled polyelectrolyte multilayer on Nafion membrane by layer-by-layer (LbL) technique with lowered methanol cross-over for direct methanol fuel cell (DMFC) applications. The formation of self-assembled multilayered film on Nafion was characterized by UV–vis spectroscopy and it was found that the polyelectrolyte layers growth on the Nafion surface regularly. Furthermore, the proton conductivity and methanol cross-over measurements were carried out for characterization of the LbL self-assembled composite membranes. The results showed that the concentration and pH of the polyelectrolytes significantly affect the proton conductivity and methanol barrier properties of the composite membranes. 10−1 monomol polyelectrolyte concentration and pH 1.8 was found to be optimum deposition conditions considering proton conductivity and methanol permeation properties of the LbL self-assembled composite membranes. The methanol permeability of the 10 bi-layers of PAH1.8/PSS1.8 deposited LbL self-assembly composite membrane was significantly suppressed and found to be 4.41 × 10−7 cm2/s while the proton conductivity value is in acceptable range for fuel cell applications.  相似文献   

11.
用AMl和INDO/CI方法研究了7-氮吲哚二体激发态双质子转移反应的位能面和机理,异构二体虽存在较强的分子内氢键,但基态时正常二体的能量仍比异构二体低,光照时正常二体可通过激发态质子转移变为异构二体,这是其荧光产生反常Stokes位移的原因。  相似文献   

12.
Proton transfer from the photoacid 8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid (HPTS) to water is studied in reverse micelles with ionic (AOT=sodium dioctyl sulfosuccinate) and non‐ionic (BRIJ‐30=polyoxyethylene(4)lauryl ether) surfactants. The dynamics are studied by probing the transient electronic absorption and transient vibrational absorption, both with sub‐picosecond resolution. The reverse micelle sizes range from approximately 1.6 to 5.5 nm in diameter. For both surfactants it is found that the rate of proton transfer decreases with decreasing reverse micelle size, regardless of surfactant. In addition, for AOT reverse micelles, a fraction of the photoacid molecules exhibit non‐radiative decay, preventing proton transfer.  相似文献   

13.
The effect of micellar environment on the excited state proton transfer (ESPT) of 2-(2'-pyridyl)benzimidazole (2PBI) has been investigated by steady state and time resolved fluorescence spectroscopy. The ESPT, which occurs to a rather small extent at pH 7, is found to be enhanced remarkably at the interface of sodium dodecyl sulfate (SDS) micelles and water. Such an enhancement is not observed for the cationic cetyl trimethyl ammonium bromide (CTAB) or neutral Triton X-100 micelles. This selective enhancement is explained in the light of a modification of pK(a) and a more acidic local pH in the micelle-water interface. A rise time of about 890 ps is observed in the region of tautomer emission. The origin of this rise time is explored, considering three factors, namely, diffusion controlled protonation of the normal form of 2PBI, slow and possibly incomplete solvation of the transition state, leading to a slowing down of the proton transfer process and a similar slow dynamics of the tautomeric excited state.  相似文献   

14.
The potential-energy surfaces for the proton transfer in the doubly hydrogen-bonded dimer of 7-azaindole in its lowest excited electronic states were examined. The dimer with C2h symmetry in its lowest excited electronic states, 2Ag and 1Bu, undergoes concerted double-proton transfer via transition states of the same symmetry placed at energies 4.55 and 4.70 kcal/mol higher, respectively. This suggests that the activation barriers for the double-proton transfer, if any, are lower than 1 kcal/mol. Emission from the dimers resulting from the double-proton transfer involves a Stokes shift of 5605 cm(-1), as theoretically estimated from the 0-0 components of the absortion and emission transitions of the dimer. Surprisingly, however, the calculations suggest that the green emission cannot arise from the 2Ag state generated by a double-proton transfer, because this structure possesses an imaginary frequency. In the 7-azaindole dimer of Cs symmetry, the first excited electronic state, a', lies 4.9 kcal/mol below 1Bu. This excited state a' can be the starting point for single-proton transfers giving a zwitterionic form that can dissociate into the protonated and deprotonated forms of 7-azaindole, the former being electronically excited. This situation of lower symmetry is consistent with the mutational scheme proposed by Goodman [Nature (London) 378, 237 (1995)].  相似文献   

15.
The excited-state intramolecular proton–transfer-induced charge transfer of semirigid polyquinoline (PQH) is explored in 1,1,2,2-tetrachloroethane (TCE) and N-methyl-2-pyrrolidinone (MP) using picosecond time-resolved fluorescence spectroscopy. Reaction mechanisms are found to depend on the rotational conformations of PQH at the moment of excitation; whereas the trans-enolic form does not undergo intramolecular proton transfer within its excited-state lifetime, the cis-enolic form does within 15 ps to form a tautomeric zwitterion species. While the subsequent intramolecular charge transfer of the zwitterionic species to yield a tautomeric keto species takes place on time scales of 25 ps in TCE (ε = 8.50) and 62 ps in MP (ε = 32.55), its reverse reaction is also followed on time scales of 28 ps in TCE and 20 ps in MP. The lack of a kinetic isotope effect in both forward and reverse charge-transfer reactions support our proposed mechanisms.  相似文献   

16.
Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with lambda(max) approximately 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenylmethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular proton-transfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent. No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.  相似文献   

17.
The excited-state double proton transfer of model DNA base pairs, 7-hydroxyquinoline dimers, in benzene has been investigated using picosecond time-resolved fluorescence spectroscopy. Upon excitation, whereas singly hydrogen-bonded noncyclic dimers do not go through tautomerization within the relaxation time of 1400 ps, doubly hydrogen-bonded cyclic dimers undergo excited-state double proton transfer on the time scale of 25 ps to form tautomeric dimers, which subsequently undergo a conformational change in 180 ps to produce singly hydrogen-bonded tautomers. The rate constant of the double proton transfer reaction is temperature-independent, showing a large kinetic isotope effect of 5.2, suggesting that the rate is governed mostly by tunneling.  相似文献   

18.
Enzyme-mediated catalysis is attributed to enzyme–substrate interactions, with models such as “induced fit” and “conformational selection” emphasizing the role of protein conformational transitions. The dynamic nature of the protein structure, thus, plays a crucial role in molecular recognition and substrate binding. As large-scale protein motions are coupled to water motions, hydration dynamics play a key role in protein dynamics, and hence, in enzyme catalysis. Here, microfluidic techniques and time-dependent fluorescence Stokes shift (TDFSS) measurements are employed to elucidate the role of nanoscopic water dynamics in the interaction of an enzyme, α-Chymotrypsin (CHT), with a substrate, Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC) in the cationic reverse micelles of benzylhexadecyldimethylammonium chloride (BHDC/benzene) and anionic reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT/benzene). The kinetic pathways unraveled from the microfluidic setup are consistent with the “conformational selection” fit for the interaction of CHT with AMC in the cationic reverse micelles, whereas an “induced fit” mechanism is indicated for the anionic reverse micelles. In the cationic reverse micelles of BHDC, faster hydration dynamics (≈550 ps) aid the pathway of “conformational selection”, whereas in the anionic reverse micelles of AOT, the significantly slower dynamics of hydration (≈1600 ps) facilitate an “induced fit” mechanism for the formation of the final enzyme–substrate complex. The role of water dynamics in dictating the mechanism of enzyme–substrate interaction becomes further manifest in the neutral reverse micelles of Brij-30 and Triton X-100. In the former, the faster water dynamics aid the “conformational selection” pathway, whereas the significantly slower dynamics of water molecules in the latter are conducive to the “induced fit” mechanism in the enzyme–substrate interaction. Thus, nanoscopic water dynamics act as a switch in modulating the pathway of recognition of an enzyme (CHT) by the substrate (AMC) in reverse micelles.  相似文献   

19.
The excited-state proton transfer and phototautomerization of 7-hydroxy-4-methylcoumarin (7H4MC) dye has been studied in the confined water pools of AOT reverse micelles using steady-state and time-resolved fluorescence measurements. In the "dry" reverse micelles ([water]/[AOT], w(0) = 0), only the neutral form of the dye is present both in the ground and the excited states. At higher w(0) values, three prototropic forms, namely, neutral, anionic, and tautomeric, can be identified in the excited state, although only the neutral form of the dye is present in the ground state. From steady-state fluorescence results and time-resolved area-normalized emission spectra (TRANES), it is indicated that the anionic and tautomeric forms of the dye are the excited-state reaction products and that they arise apparently independently from the excited neutral form of the dye. In bulk water, however, there is no evidence of the tautomeric species and only the anionic form is observed in the excited state. The fluorescence quenching results of the three forms of 7H4MC by the different quenchers, potassium iodide, aniline, and N, N-dimethylaniline, suggest that the distribution of 7H4MC molecules in the reverse micelles is not diverse but that the different prototropic forms arise from the same population of the excited dye in the interfacial region.  相似文献   

20.
Excited-state proton transfer from 5,8-dicyano-2-naphthol to methanol takes place in CO2/methanol mixtures, in the pressure and temperature ranges of supercritical CO2. The efficiency of the proton-transfer step decreases with the pressure. This is assigned to the perturbation of the methanol clusters solvating the naphthol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号