首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional approach is applied to study the phase behavior of symmetric binary Lennard-Jones(12,6) mixtures in pillared slit-like pores. Our focus is in the evaluation of the first-order phase transitions in adsorbed phases and lines delimiting mixed and demixed adsorbed phases. The scenario of phase changes is sensitive to the pore width, to the energy of fluid-solid interaction, the amount, and the length of the pillars. Quantitative trends and qualitative changes of the phase diagrams topology are examined depending on the values of these parameters. The presence of pillars provides additional excluded volume effects, besides the confinement due to the pore walls. The effects of attraction between fluid species and pillars counteract this additional confinement. We have observed that both the increasing surface pillar density and the augmenting strength of fluid-solid interactions can qualitatively change the phase diagrams topology for the model with sufficiently strong trends for demixing. If the length of pillars is sufficiently large comparing to the pore width at low temperatures, we observe additional phase transitions of the first and second order due to the symmetry breaking of the distribution of chain segments and fluid species with respect to the slit-like pore center. Re-entrant symmetry changes and additional critical points then are observed.  相似文献   

2.
The preferential adsorption of one component of a binary system at the inner surfaces of mesoporous silica glasses was studied in a wide composition range at temperatures close to liquid/liquid phase separation. Confinement effects on the adsorption were investigated by using three controlled-pore glass (CPG-10) materials of different mean pore size (10 to 50 nm). For the experimental system (2-butoxyethanol+water), which exhibits an upper miscibility gap, strong preferential adsorption of water occurs, as the coexistence curve is approached at bulk compositions, at which water is the minority component. In this strong adsorption regime the area-related surface excess amount of adsorbed water decreases with decreasing pore width, while the shift in the volume-related mean composition of the pore liquid shows an opposite trend, i.e., greatest deviation from bulk composition occurring in the most narrow pores. A simple mean-field lattice model of a liquid mixture confined by parallel walls is adopted to rationalize these experimental findings. This model reproduces the main findings of the confinement effect on the adsorption near liquid/liquid phase separation.  相似文献   

3.
We propose a new theoretical scheme for the binary phase diagrams of crystal-liquid crystal mixtures by a combination of a phase field model of solidification, the Flory-Huggins theory for liquid-liquid mixing and Maier-Saupe-McMillan (FH-MSM) model for nematic and smectic liquid crystal orderings. The phase field theory describes the crystal phase transition of anisotropic organic crystal and/or side chain liquid crystalline polymer crystals while the FH-MSM model explains isotropic, nematic and smectic-A phase transitions. Self-consistent calculations reveal several possible phase diagram topologies of the binary crystal-liquid crystal mixtures. The calculated phase diagrams were found to accord well to the reported experimental results.  相似文献   

4.
We report on an observation of the phase transition between two liquid phases of supercooled confined water in simulations. The temperature of the liquid-liquid transition of water at zero pressure slightly decreases due to confinement in the hydrophobic pore. The hydrophilic confinement affects this temperature in the opposite direction and shifts the critical point of the liquid-liquid transition to a higher pressure. As a result, in a strongly hydrophilic pore the liquid-liquid phase transition becomes continuous at zero pressure, indicating the shift of its critical point from negative to a positive pressure. These findings indicate that experimental studies of water confined in the pores of various hydrophobicity/hydrophilicity may clarify the location of the liquid-liquid critical point of bulk water.  相似文献   

5.
We present a simple and highly adaptable method for simulating coarse-grained lipid membranes without explicit solvent. Lipids are represented by one head bead and two tail beads, with the interaction between tails being of key importance in stabilizing the fluid phase. Two such tail-tail potentials were tested, with the important feature in both cases being a variable range of attraction. We examined phase diagrams of this range versus temperature for both functional forms of the tail-tail attraction and found that a certain threshold attractive width was required to stabilize the fluid phase. Within the fluid-phase region we find that material properties such as area per lipid, orientational order, diffusion constant, interleaflet flip-flop rate, and bilayer stiffness all depend strongly and monotonically on the attractive width. For three particular values of the potential width we investigate the transition between gel and fluid phases via heating or cooling and find that this transition is discontinuous with considerable hysteresis. We also investigated the stretching of a bilayer to eventually form a pore and found excellent agreement with recent analytic theory.  相似文献   

6.
Small angle neutron scattering (SANS) is used to measure the absolute density of water contained in 1-D cylindrical pores of a silica material MCM-41-S with pore diameters of 19 and 15 A. By being able to suppress the homogeneous nucleation process inside the narrow pore, one can keep water in the liquid state down to at least 160 K. From a combined analysis of SANS data from both H(2)O and D(2)O hydrated samples, we determined the absolute value of the density of 1-D confined water. We found that the average density of water inside the fully hydrated 19 A pore is 8% higher than that of the bulk water at room temperature. The temperature derivative of the density shows a pronounced peak at T(L) = 235 K signaling the crossing of the Widom line at ambient pressure and confirming the existence of a liquid-liquid phase transition at an elevated pressure. Pore size and hydration level dependences of the density are also studied.  相似文献   

7.
The mean force potential (MFP) of interaction between counterions Na+ and Cl? in a planar nanopore with structureless hydrophobic walls is calculated via computer simulation under the condition that the nanopore is in contact with water at an external pressure that exceeds the saturation pressure but remains insufficient to fill the nanopore with water. For a nanopore with a liquid phase, the MFP dependence on the interionic distance indicates the dissociation of an ion pair into two hydrated ions in a nanopore that is not completely filled with water. Fluctuations in the number of water molecules drawn into the interionic space decisively influence the dissociation. The attraction between counterions, averaged over thermal fluctuations, depends largely on the pore width and grows as the shielding of the ions’ electric field by water molecules in a narrow pore diminishes. The contributions from energy and entropy to the free energy of hydration are analyzed.  相似文献   

8.
We have studied the microscopic structure, thermodynamics of adsorption, and phase behavior of Lennard-Jones fluid in slitlike pores with walls modified due to preadsorption of chain molecules. The chain species are grafted at the walls by terminating segments. Our theoretical considerations are based on a density functional approach in the semigrand canonical ensemble. The applied constraint refers to the constant number of grafted chain molecules in the pore without restriction of the number of chains at each of the walls. We have observed capillary condensation of Lennard-Jones fluid combined with the change of the distribution of chains from nonsymmetric to symmetric with respect to the pore walls. The phase diagrams of the model are analyzed in detail, dependent on the pore width, length of chains, and grafted density.  相似文献   

9.
The study of Langmuir monolayers has generated the attention of researchers because of their unique properties and their not well understood phase equilibrium. These monolayers exhibit interesting phase diagrams where the unusual liquid-liquid equilibrium can be observed for a single component monolayer. Monte Carlo computer simulations in the virtual Gibbs ensemble were used to obtain the phase diagram of Langmuir monolayers. The liquid-vapor and liquid-liquid phase equilibria were considered by constructing the Cailletet-Mathias phase diagrams. By using the Ising model and the rectilinear approximations the identification of the critical properties for both equilibria was determined. These critical parameters were calculated as a function of the strength of the interaction between the surfactant molecules and the aqueous subphase. As a result, we have identified the coexistence between a liquid expanded state (LES)-vapor and the liquid condensed state-LES, in agreement with experimental and theoretical evidence in the literature. We obtained a clear separation of phases and a strong dependence on the strength of the solvent used. Namely, as the interaction between the solvent and the head of the surfactant increases, the critical properties also increase. Equilibrium states were characterized by computing thermodynamic quantities as a function of temperature and solvent strength.  相似文献   

10.
We have employed the density functional theory formalism to investigate the nematic-isotropic capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid crystal molecules (hybrid cell). We analyze the behavior of the capillary transition as a function of the fluid-substrate interactions and the pore width. In addition to the usual capillary transition between isotropiclike to nematiclike states, we find that this transition can be suppressed when one substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the system presents interfacelike states which allow us to continuously transform the nematiclike phase to the isotropiclike phase without undergoing a sharp phase transition. Two different mechanisms for the disappearance of the capillary transition are identified. When the director of the nematiclike state is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in a critical point. This scenario is analogous to the observed in Ising models when confined in slit pores with opposing surface fields which have critical wetting transitions. When the nematiclike state has a linearly distorted director field, the capillary transition continuously transforms in a transition between two nematiclike states.  相似文献   

11.
Grand canonical and canonical ensemble Monte Carlo simulation methods are used to study the structure and phase behavior of Lennard-Jones fluids confined between the parallel (100) planes of the face centered cubic crystal. Thin slit pores with a width allowing for the formation of only up to five atomic layers are considered. The phase diagrams of the systems characterized by different pore width as well as by different strength of the fluid-pore walls potential are determined. It is shown that an enormously large number of different phase diagram topologies can occur, depending on the parameters of the problem (pore width, strength of the fluid-pore walls potential, etc).  相似文献   

12.
Phase separation of gas–liquid and liquid–liquid microflows in microchannels were examined and characterized by interfacial pressure balance. We considered the conditions of the phase separation, where the phase separation requires a single phase flow in each output of the microchannel. As the interfacial pressure, we considered the pressure difference between the two phases due to pressure loss in each phase and the Laplace pressure generated by the interfacial tension at the interface between the separated phases. When the pressure difference between the two phases is balanced by the Laplace pressure, the contact line between the two phases is static. Since the contact angle characterizing the Laplace pressure is restricted to values between the advancing and receding contact angles, the Laplace pressure has a limit. When the pressure difference between the two phases exceeds the limiting Laplace pressure, one of the phases leaks into the output channel of the other phase, and the phase separation fails. In order to experimentally verify this physical picture, microchips were used having a width of 215 μm and a depth of 34 μm for the liquid–liquid microflows, a width of 100 μm and a depth of 45 μm for the gas–liquid microflows. The experimental results of the liquid–liquid microflows agreed well with the model whilst that of the gas–liquid microflows did not agree with the model because of the compressive properties of the gas phase and evaporation of the liquid phase. The model is useful for general liquid–liquid microflows in continuous flow chemical processing.  相似文献   

13.
Small-angle neutron scattering (SANS) data for the tri-n-butyl phosphate (TBP)-n-octane, HNO(3)-Zr(NO(3))(4) solvent extraction system, obtained under a variety of experimental conditions, have been interpreted using the Baxter model for hard spheres with surface adhesion. The increase in scattering intensity in the low Q range observed when increasing amounts of Zr(NO(3))(4) were extracted into the organic phase was interpreted as arising from interactions between small reverse micelle-like particles containing two to three TBP molecules. Upon extraction of Zr(NO(3))(4), the particles interact through attractive forces between their polar cores with a potential energy that exceeds 2 k(B)T. The interparticle attraction, under suitable conditions, leads to third phase formation. A linear relationship exists between the derivative of the potential energy of attraction with respect to the concentration of nitrate ions in the organic phase and the ionization potential or the hydration enthalpy of the extracted metal cations.  相似文献   

14.
We present grand canonical ensemble Monte Carlo simulations of prewetting transitions in a model liquid crystal at structureless solid substrates. Molecules of the liquid crystal interact via anisometric Lennard-Jones potentials and can be anchored planar or homeotropically at the substrates. Fluid-substrate attraction is modeled by a Yukawa potential of variable range. By monitoring the grand-potential density and the nematic order parameter as functions of the chemical potential μ, several discontinuous prewetting, wetting, and isotropic-nematic phase transitions are observed. These transitions depend on both the range of the fluid-substrate attraction and the specific anchoring at the substrate. Our results show that at substrates characterized by degenerate anchoring prewetting occurs at lower μ compared with cases in which the anchoring is monostable. This indicates that prewetting transitions are driven by orientational entropy because degenerate anchoring allows for more orientationally distinct configurations of molecules compared with monostable anchoring. In addition, by analyzing local density and various local order parameters, a detailed picture of the structure of various phases emerges from our simulations.  相似文献   

15.
We investigate a one-dimensional model that shows several properties of water. The model combines the long-range attraction of the van der Waals model with the nearest-neighbor interaction potential by Ben-Naim, which is a step potential that includes a hard core and a potential well. Starting from the analytical expression for the partition function, we determine numerically the Gibbs energy and other thermodynamic quantities. The model shows two phase transitions, which can be interpreted as the liquid-gas transition and a transition between a high-density and a low-density liquid. At zero temperature, the low-density liquid goes into the crystalline phase. Furthermore, we find several anomalies that are considered characteristic for water. We explore a wide range of pressure and temperature values and the dependence of the results on the depth and width of the potential well.  相似文献   

16.
The mesoscopic structure of the binary system isobutyric acid + heavy water (D(2)O) confined in a porous glass (controlled-pore silica glass, mean pore width ca. 10 nm) was studied by small-angle neutron scattering at off-critical compositions in a temperature range above and below the upper critical solution point. The scattering data were analyzed in terms of a structure factor model similar to that proposed by Formisano and Teixeira [Eur. Phys. J. E 1, 1 (2000)], but allowing for both Ornstein-Zernike-type composition fluctuations and domainlike structures in the microphase-separated state of the pore liquid. The results indicate that the phase separation in the pores is shifted by ca. 10 K and spread out in temperature. Microphase separation is pictured as a transition from partial segregation at high temperature, due to the strong preferential adsorption of water at the pore wall, to a tube or capsule configuration of the two phases at low temperatures, depending on the overall composition of the pore liquid. Results for samples in which the composition of the pore liquid can vary with temperature due to equilibration with extra-pore liquid are consistent with this picture.  相似文献   

17.
18.
A grand canonical Monte Carlo (GCMC) method is carried out to determine optimum adsorptive storage pressures of supercritical methane in pillared layered pores. In the simulation, the pillared layered pore is modeled by a uniform distribution of pillars between two solid walls. Methane is described as a spherical Lennard-Jones molecule, and Steele's 10-4-3 potential is used for representing the interaction between the fluid and a layered wall. The site-site interaction is also used for calculating the interaction energy between methane molecules and pillars. An effective potential model that reflects the characteristics of a real pillared layered material is proposed here. In the model, a binary interaction parameter, k(fw), is introduced into the combining rule for the cross-energy parameter for the interaction between the fluid and a layered wall. Based on the experimental results for the Zr-pillared material synthesized and characterized by Boksh, Kikkinides, and Yang, the binary interaction parameter, k(fw), is determined by fitting the simulation results to the experimental adsorption data of nitrogen at 77 K. Then, by taking it as a model of pillared layered material, a series of GCMC simulations have been carried out. The excess adsorption isotherms of methane in a pillared layered pore with three different pore widths and porosities are obtained at three supercritical temperatures T=207.3, 237.0, and 266.6 K. Based on the simulation results at different porosities, various pore widths and different supercritical temperatures, the pillared layered pore with porosity psi=0.94 and pore width hsigma(p)=1.02 nm is recommended as adsorption storage material of supercritical methane. Moreover, the optimum adsorption pressure is determined at a given temperature and a fixed width of the pillared layered pore. For example, at temperature T=207.3 K, the optimum adsorption pressures are 3.1, 3.7, and 4.5 M Pa at H=1.02, 1.70, and 2.38 nm, respectively. In summary, the GCMC method is a useful tool for optimizing adsorption storage of supercritical methane in pillared layered material.  相似文献   

19.
To elucidate induced smectic A and smectic B phases in binary nematic liquid crystal mixtures, a generalized thermodynamic model has been developed in the framework of a combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for orientational ordering, McMillan free energy for smectic ordering, Chandrasekhar-Clark free energy for hexagonal ordering, and phase field free energy for crystal solidification. Although nematic constituents have no smectic phase, the complexation between these constituent liquid crystal molecules in their mixture resulted in a more stable ordered phase such as smectic A or B phases. Various phase transitions of crystal-smectic, smectic-nematic, and nematic-isotropic phases have been determined by minimizing the above combined free energies with respect to each order parameter of these mesophases. By changing the strengths of anisotropic interaction and hexagonal interaction parameters, the present model captures the induced smectic A or smectic B phases of the binary nematic mixtures. Of particular importance is the fact that the calculated phase diagrams show remarkable agreement with the experimental phase diagrams of binary nematic liquid crystal mixtures involving induced smectic A or induced smectic B phase.  相似文献   

20.
《Liquid crystals》1998,24(2):229-241
Liquid crystal phases can be induced chemically by mixing compounds whose specific interactions are such that the transition temperature for the induced phase is higher than the melting points of the two compounds. A particularly dramatic example of such behaviour is the creation of a columnar nematic and a hexagonal columnar phase on mixing discotic multiynes with 2,4,7-trinitrofluorenone. Although the intense colour of the mixture indicates a strong charge-transfer band, it is uncertain as to whether the charge-transfer interaction between unlike molecules is enough to stabilize the induced liquid crystal phases. An alternative explanation for the formation of such phases involves an electrostatic quadrupolar interaction between the components,whose quadrupole moments differ in sign. This interaction weakens the face-to-face attraction for like particles while strengthening it for unlike particles. We have explored this possible explanation for chemically induced liquid crystal phases in discotic systems by modelling the basic interaction between discs with a Gay-Berne potential, to which is added a point quadrupolar interaction. We have determined the phase behaviour of the pure systems and their binary mixtures with constant pressure Monte Carlo simulations. It would seem that the quadrupolar interaction can account for many of the features of chemically induced liquid crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号