首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
四氯合铜酸二烷基铵相变的热分析和红外光谱   总被引:3,自引:0,他引:3  
用DSC和TG研究了(n-C_nH_(2n+1)NH_3)_2CuCl_4(n=7-12)(记为C_nM)配合物的热稳定性和固-固相变。由红外光谱讨论了C_9Cu三个相的性质。发现C_nM的热稳定性呈奇偶效应; 主相变峰温随链长增长而升高; 相变总ΔH和ΔS也随链增长而加大; 当n≤9时, 高温相为部分无序相; 而n≤10时, 高温相为构象无序相。C_9Cu的主相变主要源自链间堆积结构变化。而在307.7 K的相变主要与烃链有序-无序变化有关。  相似文献   

2.
Molecular dynamics modeling of C-C bond dissociation is performed for a series of linear alkanes and polyethylene macromolecules with the chain lengths ranging from one to a thousand constituent ethylene monomers (PE-1-PE-1000). The rate constants obtained in molecular dynamics calculations are compared with those determined using variational transition state theory with the same potential energy surface. The results of simulations demonstrate a significant accelerating effect of chain length on the rates of C-C bond scission. Per-bond rate constant values increase with the increasing chain length, up to an order of magnitude, in the sequence of linear alkanes from PE-1 (ethane) to PE-5 (decane); this dependence becomes saturated for longer chain lengths. Stiffening the potentials of bending and especially the torsional degrees of freedom diminishes the accelerating effect of chain length, while constraining the bond distances for all C-C bonds except the one undergoing dissociation has no effect. The results of the calculations are compared with existing experimental data on the dependences of the rates of thermal decomposition of linear alkanes on the alkane chain length.  相似文献   

3.
The thermal behavior, upon heating, was studied for four alkanes: eicosane, tetracosane, triacontane, and tetracontane at pressures from (10 to 150) MPa. Using a transitiometer, the calorimetric signal, pressure, and temperature were measured at a very slow heating rate to guarantee thermal equilibrium.It was found that from the compounds studied, eicosane was the only one that did not present a solid-solid transition; the other compounds show a solid-solid transition a few Kelvin below the solid-liquid transition temperature. This solid-solid transition disappears when the pressure is increased in a triple point of type: solid + solid + liquid.  相似文献   

4.
张志英  杨孟林 《化学学报》1988,46(3):281-284
研究了四氯合锌(II)酸正十二烷铵(C12H25NH3)2ZnCl4(1)]在280-500K间的热力学性质和相变热参数. 据报导(RNH3)MX4型化合物在300-380K间有相变焓很大的固-固相变, 是很有开发前景的固-固相变低温储能材料, 本文为(1)的应用提供了精确的热数据.  相似文献   

5.
A series of symmetrical dialkyl ammonium salts, DCnX, has been prepared and characterized with respect to temperature and enthalpy of solid-solid phase transitions, temperature of melting, thermal stability as well as the reversibility of the phase transitions. The number of carbon atoms, Cn, was varied between 8 and 18 and as anions X halides, nitrate, chlorate, perchlorate and hydrogen sulphate had been chosen. In dependence on chain length and anion type transition temperatures from 20 to 100 °C were observed. Mass specific solid-solid transition enthalpies reach values of 185 J g−1, which makes this class of substances attractive for heat storage applications. The influence of anion type on the transition enthalpies is explained in terms of packing requirements, hydrogen bond network formation and contributions from hindered anion rotation.  相似文献   

6.
High-resolution calorimetric techniques have substantially contributed in characterising and understanding the delicate thermal behaviour near many phase transitions in liquid crystals. In this paper we describe a high-resolution adiabatic scanning calorimetric technique that has proven to be an important tool in discriminating between first-order and second-order phase transitions in addition to rendering high-resolution information on fluctuations-induced pretransitional specific heat capacity behaviour. The capabilities of adiabatic scanning calorimetry are illustrated with experimental results for the isotropic to nematic and the isotropic to smectic A transitions for a series of alkylcyanobiphenyl compounds. For the nematic to smectic A transition results are presented for pure compounds and mixtures of liquid crystals as well as on the effects of added non-mesogenic solutes and nanoparticles. For chiral molecules results for phase transitions involving blue phases and twist grain boundary phases are considered.  相似文献   

7.
In this work the thermal diffusion behavior of binary mixtures of linear alkanes (heptane, nonane, undecane, tridecane, pentadecane, heptadecane) in benzene has been investigated by thermal diffusion forced Rayleigh scattering (TDFRS) for a range of concentrations and temperatures. The Soret coefficient ST of the alkane was found to be negative for these n-alkane/benzene mixtures indicating that the alkanes are enriched in the warmer regions of the liquid mixtures. For the compositions investigated in this work, the magnitude of the Soret coefficient decreases with increasing chain length and increasing alkane content of the mixtures. The temperature dependence of the Soret coefficient depends on mixture composition and alkane chain length; the slope of ST versus temperature changes from positive to negative with increasing chain length at intermediate compositions. To study the influence of molecular architecture on the Soret effect, mixtures of branched alkanes (2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,2,3-trimethylbutane, and 2,2,4-trimethylpentane) in benzene were also investigated. Our results for the Soret coefficients show that the tendency for the alkanes to move to the warmer regions of the fluid decreases with increasing degree of branching. The branching effect is so strong that for 2,2,4-trimethylpentane/benzene mixtures the Soret coefficient changes sign at high alkane content and that equimolar 2,2,3-trimethylbutane/benzene mixtures have positive Soret coefficients in the investigated temperature range. In order to investigate the effect of molecular interactions on thermal diffusion, we adapted a recently developed two-chamber lattice model to n-alkane/benzene mixtures. The model includes the effects of chain-length, compressibility, and orientation dependence of benzene-benzene interactions and yields good qualitative predictions for the Soret effect in n-alkane/benzene mixtures. For the branched isomers, we find some correlations between the moments of inertia of the molecules and the Soret coefficients. PACS numbers: 66.10.Cb, 61.25.Hq.  相似文献   

8.
Another thermodynamic approach to the Gibbs-Thomson equation, starting from an incremental composition of enthalpy and entropy of the chain molecule, is presented. This describes the melting temperature of (lamella) crystals of linear, folded and cyclic alkanes as well as polyethylenes (PEs) of different type with only one set of parameters. The essential variable turns out to be the number of repeat units (r.u.) (“beads”) of the respective molecule, incorporated into the crystallite, rather than the crystallite size. The finding supports the melting being a dynamic process which starts at the surface (interface) of the crystallite. The approach helps to understand the melting behavior of semi-crystalline polymers, it enables the cyclic and normal alkanes to serve as model substances for polymer crystals although their crystals are nearly perfect and large by contrast to the situation in semi-crystalline polymers.  相似文献   

9.
The gas Chromatographic properties of five laterally substituted liquid crystals are the subject of a comparative study. These liquid crystals belong to the homologous series: 2-alkoxy-3-methyl-4-(4-ethoxybenzoyl-oxy)-4′-(4-trans-n-pentyclcyclohexanecarboxyloxy) azobenzene, referred to as ALn, where n, the carbon number in the lateral alkoxy chain, is equal to 4, 6, 8, 10, or 12 carbon atoms. Their thermal properties were established by differential scanning calorimetry (DSC). It appears that the introduction of a lateral alkoxy chain affects the nematic temperature range which decreases when the carbon number increases. The chromatographic separation abilities of AL4, AL6, AL8, AL10, and AL12 were studied using capillary glass columns. The five liquid cystals are efficient before and after solid-nematic or nematic-liquid transitions; however, the plate numbers are higher in the nematic state. Interesting analytical properties were noted in various fields: iisomeric separation of alkanes, aromatics, polyaromatics, volatile aroma compounds, and cis and trans isomers. However, the chain length does not exert any great influence on the separation abilities.  相似文献   

10.
Several quantitative structure-property relationship (QSPR) models between 15 basic physical properties or thermodynamic functions of alkanes and their molecular electronegative distance vectors (MEDV) are developed. For six of the properties-boiling point (BP), density (D) at 25 degrees C, refraction index (RI) at 25 degrees C, critical temperature (CT), critical pressure (CP), and surface tension (ST) at 20 degrees C-logarithmic models are found to give better results than conventional (linear) models since the values of these properties all tend to a limit with increasing carbon chain length. All models are created using multiple linear regression (MLR). Conventional models are proposed for the remaining nine physical properties or thermodynamic functions: molar volume (MV) at 20 degrees C, molar refraction (MR) at 20 degrees C, heat capacity (HC) at 300 K, enthalpy (E) at 300 K, heats of vaporization (HV) at 25 degrees C, heat of atomization (HA) at 25 degrees C, standard heat of formation (HF) at 25 degrees C, heat of formation in liquid (HFL) at 25 degrees C, and heat of formation in gas (HFG) at 25 degrees C.  相似文献   

11.
The behavior of binary mixtures of linear symmetrical ethers and alkanes adsorbed to a graphite surface from the bulk liquid mixtures is described on the basis of differential scanning calorimetry (DSC) data. Both the ethers and the alkanes are found to form solid monolayers when adsorbed from the liquid. In addition, the monolayer mixing behavior is addressed. The results indicate that there is good, essentially ideal, mixing in the monolayers for ethers and alkanes of the same overall chain length, where the chain length is equal to the total number of carbon and oxygen atoms in the molecule. However, a difference in chain length of more than one atom results in a variation of mixing behavior from nonideal mixing (for long pairs) to phase separation (for short pairs) on the graphite surface. Hence, we conclude that it is the relative chain lengths that control mixing behavior. The results are quantified using a regular solution model with a correction for preferential adsorption. The phase behavior of the mixed monolayers is also compared to the behavior of the bulk. Interestingly, we observe mixtures where the bulk and monolayer behavior are quite different, for example, phase separation in the bulk but essentially ideal mixing in the monolayer for mixtures of ethers and alkanes with the same chain lengths. At present, we attribute this mixing in the monolayer to dilution of the unfavorable ether oxygen-ether oxygen lone pair interactions by the coadsorbed alkanes. In addition, we find evidence for the preferential adsorption of the alkane over the ether. For example, heptane is preferentially adsorbed over dibutyl ether even though it contains two fewer atoms in the molecular chain. This contrasts with the preferential adsorption of alcohols over alkanes reported previously (Messe, L.; Perdigon, A.; Clarke, S. M.; Inaba, A.; Arnold, T. Langmuir 2005, 21, 5085-5093).  相似文献   

12.
13C NMR progressive saturation measurements are used to investigate solid state chain diffusion in semicrystalline alkanes. Monodisperse, ultralong n-alkanes, of 198 and 191 carbon atoms in length, are characterized and prepared in such a way that they comprise crystals containing chains which are exclusively of once-folded conformation. This preparation is confirmed with DSC and SAXS. The progressive saturation experiments show that the longitudinal relaxation of magnetisation is consistent with a solid state chain diffusion process. Reptation and one-dimensional diffusion models are demonstrated to satisfactorily represent the data. The addition of branches to the alkane chains is shown to result in a decrease in the diffusion coefficient. The obtained diffusion coefficients range from 0.0918 nm2s−1 for the linear chain to 0.016 nm2s−1 for a chain with a branch 4 carbons in length. These diffusion coefficients are consistent with those previously obtained for polyethylenes.  相似文献   

13.
Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C(9)H(20)) to n-heptadecane (C(17)H(36)), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.  相似文献   

14.
According to the fluctuation theory of phase transitions, a real liquid near the critical point is an ideal gas of the fluctuations of the order parameter, the size of which is determined by the correlation length of the system. We deduce the extended equation of state of liquids near the critical temperature by including the properties of the real van der Waals gas in this model, i.e., taking into account the own volume of the fluctuations of the order parameter and the interaction forces between them. We use this equation to analyze the temperature dependence of the density of a series of alkanes (C n H2n + 2, n = 1 − 12) along the line of the liquid-gas equilibrium near their critical temperatures. We show that the parameters of this extended equation of the state of substance are linear functions of the compressibility factor of alkanes.  相似文献   

15.
We studied the thermal conductivity, thermal effusivity, and specific heat capacity at constant pressure of the critical binary liquid mixture aniline-cyclohexane near the consolute point, using a photopyroelectric (PPE) technique and adiabatic scanning calorimetry (ASC). According to recent theoretical predictions based on renormalization group theory calculations, a substantial (but not diverging) enhancement in the thermal conductivity in the homogeneous phase near the critical temperature was expected for this binary system near the consolute point. However, within an experimental precision of 0.05%, we found no deviation from linear behavior in the range of 5 K above Tc down to Tc. The specific heat capacity calculated from the results for the thermal conductivity and effusivity is in good agreement with that measured by ASC. For the ASC results, the theoretical power law expression with the Ising critical exponent was fitted to the specific heat capacity both above and below the transition temperature. Good agreement with theory was found both for the amplitude ratio and the two-scale universality.  相似文献   

16.
The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F(3)C(CF(2))(n-1)(CH(2))(m-1)CH(3) are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen.  相似文献   

17.
By means of the pulsed field gradient NMR technique the self-diffusion of six alkanes (from n-butane to n-pentadecane) in three low density polyethylenes and one high density polyethylene differently thermally treated was examined. The concentration dependence could be described very satisfactorily with the free volume theory in the form of Fujita (Adv. Polymer Sci. 3(1961) 1). The parameter B of the diffusants and the fractional free volumef 2 of the polyethylenes were determined from the experimental data. The fractional free volumesf 2 show a strong dependence on the type of polyethylene, the main influence results from the different content of CH3 groups or short chain branches. The diffusion coefficient extrapolated to zero diffusant concentration is proportional to the eighth power of the amorphous content. This strong dependence shows that the free volumes of the amorphous parts of the polyethylenes are intimately connected with crystallinity, both determined by the different degrees of short chain branching. The pre-exponential factor in the free volume expression decreases with increasing amorphous content of the polyethylenes and increases with increasing length of the diffusants. It was found that the spherulite boundaries in the polyethylenes do not act as diffusion barriers.  相似文献   

18.
张志英  杨孟林 《化学学报》1989,47(11):1041-1047
在280-500K温度范围内用自动绝热量热计测量了(n-C~1~2H~2~5NH~3)~2CdCl~4的热容。在所研究的温度范围内发现一个固-固相转变, 其相变温度, 相变焓和相变熵分别为(332.4±0.1)K,(48.35±0.33)kJ.mol^-^1和(145.5±1.0)J.K^-^1.mol^-^1。结合已发表的(n-C~1~2H~2~5NH~3)~2MCl~4(M=Mn, Zn)的相变参数讨论了此类配合物的中心原子对其相变的影响。[MCl~4]^2^-配位方式的不同被认为是该类配合物的相变热参数产生差异的主要原因。  相似文献   

19.
Anion photoelectron spectroscopy is performed on the C(5)H(-) species. Analogous to C(3)H(-) and C(3)D(-), photodetachment transitions are observed from multiple, energetically close-lying isomers of the anion. A linear and a cyclic structure are found to have electron binding energies of 2.421+/-0.019 eV and 2.857+/-0.028 eV, respectively. A cyclic excited state is also found to be 1.136 eV above the linear (2)Pi C(5)H ground state. Based on our assignments of the observed transitions and previous calculations on the energetics of neutral C(5)H isomers, the cyclic (1)A(1) anion state is found to lie 0.163 eV below the (3)A linear anion.  相似文献   

20.
A series of octakis(dimethylsiloxy)octasilsesquioxanes bearing linear and branched alkyl substituents has been prepared in high yield by Pt-catalyzed hydrosilylation of alkenes with octakis(hydrodimethylsiloxy)octasilsesquioxane, chain length varying between C3 and C8 for the straight-chain derivatives and between C5 and C7 for the branched-chain derivatives. On the basis of a WAXS study, we showed that the linear derivatives are amorphous and that the interdigitation of alkyl chains between neighboring POSS molecules increases as the alkyl chain length increases from propyl to octyl. The thermal behavior of these compounds was studied by DSC, polarized optical microscopy and TGA in nitrogen and air atmosphere. The derivatives with shorter n-alkyl chains from C3 to C6 crystallize below 0 °C whereas the derivatives with longer n-alkyl chains (C7 and C8) can be regarded as amorphous glasses with a Tg around –100 °C. The morphology and thermal properties change considerably with branching of the alkyl chain. Melting points above ambient temperature were found for the iso-hexyl and iso-heptyl POSS derivatives whereas the iso-pentyl POSS derivative is liquid at 25 °C. From the values of the heat of fusion as well as entropy of fusion, it was concluded that packing of the side groups in the crystal structure increases as the size of the branched alkyl group increases. TGA evidenced a negative effect of the branching of the alkyl chain on the thermal stability in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号