首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Xie F  Lin X  Wu X  Xie Z 《Talanta》2008,74(4):836-843
The immobilization of gallic acid on the surface of amino group-containing silica gel phases for the formation of a newly chelating matrix (GASG) is described. The newly synthesized extractant, characterized by the diffuse reflectance infrared Fourier transformation spectroscopy and elemental analysis, was used to preconcentrate Pb(II), Cu(II), Cd(II) and Ni(II). The pH ranges for quantitative sorption and the concentrations of HCl for eluting Pb(II), Cd(II), Cu(II) and Ni(II) were opimized, respectively. The sorption capacity of the matrix has been found to be 12.63, 6.09, 15.38, 4.62mg/g for Pb(II), Cd(II), Cu(II) and Ni(II), respectively, with the preconcentration factor of approximately 200 ( approximately 100 for Cd(II)). The effects of flow rates, the eluants, the electrolytes and cations on the metal ions extraction, as well as the chelating matrix stability and reusability, were also studied. The extraction behavior of the matrix was conformed with Langmuir's equation. The present preconcentration and determination method was successfully applied to the analysis of synthetic metal mixture solution and river water samples. The 3sigma detection limit and 10sigma quantification limit for Pb(II), Cu(II), Cd(II) and Ni(II) were found to be 0.58, 0.86, 0.65, 0.92microg/L and 1.08, 1.23, 0.87, 1.26microg/L, respectively.  相似文献   

2.
Solid-phase extraction (SPE) method for preconcentration and determination of Cd(II), Pb(II), Co(II), Ni(II), and Cu(II) aqueous samples by inductively coupled plasma optical emission spectrometry is described. The preconcentration of analytes is accomplished by retention of their chelates with 1.10-phenanthroline in aqueous solution on a solid phase containing carboxylic acid (COOH) bonded to silica gel in a column. The limits of detection values (defined as “3s” where “s” is standard deviation of the blank determination) are 3.6 μg/L for Cd(II), 17.5 μg/L for Pb(II), 3.1 μg/L for Co(II), 2.1 μg/L for Ni(II), and 4.4 μg/L for Cu(II) and corresponding limit of quantification (6s) values are 7.2, 35, 6.2, 4.2 and 8.8 μg/L, respectively. As a result, a simple method was elaborated for the group concentration and determination of the above mentioned metals in reference material and in samples of plant material. The article is published in the original.  相似文献   

3.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

4.
Two new mixed aza-thia crowns 5-aza-2,8-dithia[9]-(2,9)-1,10-phenanthrolinophane (L(4)) and 2,8-diaza-5-thia[9]-(2,9)-1,10-phenanthrolinophane (L(7)) have been synthesized and characterized. The coordination behavior of L(4) and L(7) toward the metal ions Cu(II), Zn(II), Pb(II), Cd(II), Hg(II), and Ag(I) was studied in aqueous solution by potentiometric methods, in CD3CN/D2O 4:1 (v/v) by (1)H NMR titrations and in the solid state. The data obtained were compared with those available for the coordination behavior toward the same metal ions of structurally analogous mixed donor macrocyclic ligands L(1)-L(3), L(5), L(6): all these contain a phenanthroline subunit but have only S/O/N(aromatic) donor groups in the remaining portion of the ring and are, therefore, less water-soluble than L(4) and L(7). The complexes [Cd(NO3)2(L(5))], [Pb(L(7))](ClO4)2 x 1/2MeCN, [Pb(L(4))](ClO4)2 x MeCN, and [Cu(L(7))](ClO4)2 x 3/2MeNO2 were characterized by X-ray crystallography. The efficacy of L(1)-L(7) in competitive liquid-liquid metal ion extraction of Cu(II), Zn(II), Cd(II), Pb(II), Ag(I), and Hg(II) was assessed. In the absence of Hg(II), a clear extraction selectivity for Ag(I) was observed in all systems investigated.  相似文献   

5.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

6.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

7.
The coordination chemistry of the new pyridine-based, N2S2-donating 12-membered macrocycle 2,8-dithia-5-aza-2,6-pyridinophane (L1) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been investigated both in aqueous solution and in the solid state. The protonation constants for L1 and stability constants with the aforementioned metal ions have been determined potentiometrically and compared with those of ligand L2, which contains a N-aminopropyl side arm. The measured values show that Hg(II) in water has the highest affinity for both ligands followed by Cu(II), Cd(II), Pb(II), and Zn(II). For each metal ion considered, 1:1 complexes with L1 have also been isolated in the solid state, those of Cu(II) and Zn(II) having also been characterised by X-ray crystallography. In both complexes L1 adopts a folded conformation and the coordination environments around the two metal centres are very similar: four positions of a distorted octahedral coordination sphere are occupied by the donor atoms of the macrocyclic ligand, and the two mutually cis-positions unoccupied by L1 accommodate monodentate NO3- ligands. The macrocycle L1 has then been functionalised with different fluorogenic subunits. In particular, the N-dansylamidopropyl (L3), N-(9-anthracenyl)methyl (L4), and N-(8-hydroxy-2-quinolinyl)methyl (L5) pendant arm derivatives of L1 have been synthesised and their optical response to the above mentioned metal ions investigated in MeCN/H2O (4:1 v/v) solutions.  相似文献   

8.
A solid phase extraction system for separation and preconcentration of trace amounts of Pb(II), Ni(II), Cd(II) and Cu(II) is proposed. The procedure is based on the adsorption of Pb2+, Ni2+, Cd2+ and Cu2+ ions on a column of 1-(2-pyridylazo)-2-naphthol (PAN) immobilised on surfactant-coated clinoptilolite prior to their determinations by Flame Atomic Absorption Spectroscopy (FAAS). The effective parameters including pH, sample volume, sample flow rate and eluent flow rate were also studied. The analytes collected on the column were eluted with 5 mL of 1 mol L?1 nitric acid. A concentration factor of 180 can be achieved by passing 900 mL of sample through the column. The detection limits (3 s) for Cd, Cu, Pb and Ni were found to be 0.28, 0.12, 0.44 and 0.46 µg L?1, respectively. The relative SDs at 10 µg L?1 (n = 10) for analytes were in the range of 1.2–1.4%. The method was applied to the determination of Pb, Ni, Cd and Cu in water samples.  相似文献   

9.
The complexes formed between IE11 and Cd(II), Cr(III), Cu(II), Mn(II) and Pb(II) were identified and confirmed by IR, UV and pH-metric titration. The uptake behavior of porous silica modified with N-propylsalicylaldimine (IE11) and these metal ions were studied. Log k(d) was found to be within the range 2.19-5.16 depending on pH and time of stirring. IE11 was used in the separation and preconcentration of Cd(II), Cr(III, VI), Cu(II), Mn(II, VII) and Pb(II) from some natural water samples. Data were compared with those obtained by the solvent extraction method APDC/MIBK. The proposed methodology allows to verify an improvement in the water quality of Nile River probably attributed to high to moderate floods in the last few years. The method was found to be accurate and not subject to random error, i.e. precise.  相似文献   

10.
Goswami A  Singh AK 《Talanta》2002,58(4):669-678
A new chelating matrix has been prepared by immobilizing 1,8-dihydroxyanthraquinone (DHAQ) on silica gel modified with (3-aminopropyl)triethoxysilane. After characterizing the matrix with thermogravimetric analysis (TGA), cross polarization magic angle spinning (CPMAS) NMR and diffuse reflectance infrared fourier transformation (DRIFT) spectroscopy, it has been used to preconcentrate Pb(II), Cd(II) and Zn(II) prior to their determination by flame atomic absorption spectrometry. The optimum pH ranges for quantitative sorption are 6.0-7.5, 7.0-8.0 and 6.0-8.0 for Pb, Zn, and Cd, respectively. All the metal ions can be desorbed with 2 mol l(-1) HCl/HNO(3). The sorption capacity of the matrix has been found to be 76.0, 180.0 and 70.2 mumol g(-1) for Pb, Zn and Cd, respectively, with the preconcentration factor of approximately 200. The limits upto which electrolytes NaNO(3), NaCl, NaBr, Na(2)SO(4), Na(3)PO(4) sodium citrate, EDTA, glycine and humic acid and cations Ca(II), Mg(II), Cu(II), Co(II), Ni(II), Mn(II) Al(III), Cr(III) and Fe(III) can co-exist with the metal ions during their sorption without any adverse effect are reported. The lowest concentration of metal ions for quantitative recovery is 5.0 ng ml(-1) The simultaneous enrichment and determination of all the metals is possible if total load of metal ions is less than sorption capacity. The flame AAS was used to determine these metal ions in underground, tap and river water samples (relative standard deviation (R.S.D.)相似文献   

11.
A novel UV-VIS spectrophotometric method was developed in this study by using solid phase extraction procedure for the simultaneous preconcentration, separation and determination of trace levels of Pb (II), Cd (II) and Zn (II) ions in various water samples by using Amberlite N,N-bis(salicylidene)cyclohexanediamine (SCHD) resin. This study presents the results of experimental procedures carried out like the adsorption of analytes to the resin, influences of some analytical parameters that effect the recovery such as pH, sample volume, sample flow rate, eluent type and concentration, eluent volume, eluent flow rate and the effects of alkaline metals, earth alkaline metals and some other transition metals. The analytes in the samples with the adjusted pH range of 4–7 were adsorbed on XAD-4-SCHD resin and eluted by using 1.0 mol L?1 nitric acid. The amounts of ions were determined by using UV-VIS spectrometer. The limits of detection were 0.03, 0.07 and 0.05 µg mL?1 for Pb (II), Cd (II) and Zn (II), respectively. The accuracy of the method was assured by the analysis of the certified standard water sample NW-TMDA-70.2 and the observed recoveries were above 93%. Different environmental water samples that contain trace amounts of Pb (II), Cd (II) and Zn (II) were analysed by using the method developed in this study. Same samples were also analysed by ICP-MS for comparison and almost the similar results were observed. The method developed in this study was successfully applied to the various environmental water samples to determine the trace levels of Pb (II), Cd (II) and Zn (II) ions.  相似文献   

12.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

13.
The present article reports the application of Thiosemicarbazide‐modified multiwalled carbon nanotubes (MWCNTs‐TSC) as a new, easily prepared selective and stable solid sorbent for the preconcentration of trace Co(II), Cd(II), Cu(II) and Zn(II) ions in aqueous solution prior to the determination by flame atomic absorption spectrometry. The studied metal ions can be adsorbed quantitatively on MMWNTs at pH 5.0 and then eluted completely with HNO3 (1.5 mol L?1) prior to their determination by flame atomic absorption spectrometry. The separation/preconcentration conditions of analytes were investigated, including the pH, the sample flow rate and volume, the elution condition and the interfering ions. The maximum adsorption capacity of the adsorbent at optimum conditions were found to be 32.5, 27.3, 44.5 and 34.1 mg g?1 for Co(II), Cd(II), Cu(II) and Zn(II), and the detection limits of the method were found to be 0.28, 0.13, 0.21 and 0.17 μg L?1, respectively. The proposed method was successfully applied for extraction and determination of the analytes in well water, sea water, wastewater, soil, and blood samples.  相似文献   

14.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

15.
Nano-structured 2-line ferrihydrite was synthesized by a pH-controlled precipitation technique at 90 °C. Chemical, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman analyses confirmed the sample to be 2-line ferrihydrite. The nano nature of the prepared sample was studied by transmission electron microscopy (TEM). The surface area obtained by the Brunauer-Emmett-Teller (BET) method was 175.8 m(2) g(-1). The nanopowder so obtained was used to study its behaviour for the removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. The relative importance of experimental parameters such as solution pH, contact time and concentration of adsorbate on the uptake of various cations was evaluated. By increasing the pH from 2.0 to 5.5, adsorption of the four cations increased. The kinetics parameters were compared by fitting the contact time data to both linear as well as non-linear forms of pseudo-second-order models. Linear forms of both Langmuir and Freundlich models fitted the equilibrium data of all the cations except for Pb(II) which was also fitted to the non-linear forms of both the models as it gave a low R(2) value of 0.85 for the Langmuir model. High Langmuir monolayer capacities of 366, 250, 62.5 and 500 mg g(-1) were obtained for Pb(II), Cd(II), Cu(II) and Zn(II), respectively. Presence of chloride or sulfate had an adverse effect on cation adsorption. The interactive effects on adsorption from solutions containing two, three or four cations were studied. Surprisingly no Cd(II) adsorption was observed in Pb(II)-Cd(II), Pb(II)-Cd(II)-Zn(II) and Pb(II)-Cd(II)-Cu(II)-Zn(II) systems under the studied concentration range. The overall loading capacity of the adsorbent decreased in mixed cation systems. Metal ion loaded adsorbents were characterized by XRD, FTIR and Raman techniques. The high adsorption capability of the 2-lines ferrihydrite makes it a potentially attractive adsorbent for the removal of cations from aqueous solutions.  相似文献   

16.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5-5.0, 4.5, 4.0-5.0, 4.0, 5.0 and 5.0-7.0, respectively, and their desorptions by 2 mol L(-1) HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g(-1) of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL(-1). The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD < or = 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of approximately 3.0%.  相似文献   

17.
Candir S  Narin I  Soylak M 《Talanta》2008,77(1):289-293
A cloud point extraction (CPE) procedure has been developed for the determination trace amounts of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions by using flame atomic absorption spectrometry. The proposed cloud point extraction method was based on cloud point extraction of analyte metal ions without ligand using Tween 80 as surfactant. The surfactant-rich phase was dissolved with 1.0 mL 1.0 mol L−1 HNO3 in methanol to decrease the viscosity. The analytical parameters were investigated such as pH, surfactant concentration, incubation temperature, and sample volume, etc. Accuracy of method was checked analysis by reference material and spiked samples. Developed method was applied to several matrices such as water, food and pharmaceutical samples. The detection limits of proposed method were calculated 2.8, 7.2, 0.4, 1.1, 0.8 and 1.7 μg L−1 for Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II), respectively.  相似文献   

18.
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.  相似文献   

19.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized by glutaric dihydrazide (GDH) and characterized with FT-IR technique. This new sorbent was used for enrichment and preconcentration of Co(II), Cd(II), Pb(II), and Pd(II) ions. The adsorption was achieved quantitatively on MWCNTs at pH 4.0, and then the retained metal ions on the adsorbent were eluted with 1.5 mol L?1 HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg g?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The LOD values of the method were 0.16, 0.19, 0.17, and 0.12 ng mL?1 (3Sb, n = 10) for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The RSDs values of the method were 0.75, 0.85, 1.16, and 1.30 ng mL?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The method was applied for the determination of analytes in soil, well water, and wastewater samples with satisfactory results.  相似文献   

20.
A sorbent extraction procedure for Pb(II), Cu(II), Ni(II), and Fe(III) ions on single-walled carbon nanotube disks has been established. Analyte ions were converted to 2-(5-bromo-2-pyridylazo)-5-diethylamino-phenol chelates, then adsorbed on the disk. Adsorbed chelates were easily desorbed from the disk by using 10 mL 2 M HNO3. The various analytical parameters, including pH and reagent amounts that were effective for the recoveries of the analytes on nanotube disks, were optimized. The influence of matrix ions was also studied. The LOD values based on 3sigma were in the 0.3-4.6 microg/L range. Validation of the proposed SPE procedure was carried out by the determination of analytes in certified reference materials (TMDA-54.4 fortified lake water and HR-1 Humber River sediment). Spiking and recovery experiments for the analyte ions in real samples gave good results. Application of the procedure was illustrated by the determination of analyte contents in some animal feeds and water samples from Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号