首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arrays of 6.6 nm iron oxide nanocrystals coated with fatty acid molecules were produced using the Langmuir-Blodgett technique. The arrays had a varying number of layers stacked together, going from two dimensional to three dimensional and two different in-plane interparticle separations. While temperature-dependent ac susceptibility measurements of the isolated nanocrystals obeyed the Neel-Brown relaxation law, the array relaxation deviated significantly from this simple law. This deviation together with the observed dc field influence on the susceptibility-temperature curves, the large shifts in blocking temperatures and reduction in susceptibility-temperature curve widths on going from isolated particles to the arrays indicated collective magnetization dynamics during magnetization freezing. A scaling law analysis of this freezing dynamics yielded different powers for the two different interparticle separations with no dependence on dimensionality. In spite of the spin-glass-like behavior, it is possible that small, magnetically ordered domains of nanocrystals form at low temperature.  相似文献   

2.
The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains.  相似文献   

3.
Results of molecular dynamics simulations are presented for the pair distribution function between nanoparticles in an explicit solvent as a function of nanoparticle diameter and interaction strength between the nanoparticle and solvent. The effect of including the solvent explicitly is demonstrated by comparing the pair distribution function of nanoparticles to that in an implicit solvent. The nanoparticles are modeled as a uniform distribution of Lennard-Jones particles, while the solvent is represented by standard Lennard-Jones particles. The diameter of the nanoparticle is varied from 10 to 25 times that of the solvent for a range of nanoparticle volume fractions. As the strength of the interactions between nanoparticles and the solvent increases, the solvent layer surrounding the nanoparticle is formed which increases the effective radii of the nanoparticles. The pair distribution functions are inverted using the Ornstein-Zernike integral equation to determine an effective pair potential between the nanoparticles mediated by the introduction of an explicit solvent.  相似文献   

4.
Aqueous suspension of nanoclay Laponite undergoes structural evolution as a function of time, which enhances its elasticity and relaxation time. In this work, we employ an effective time approach to investigate long-term relaxation dynamics by carrying out creep experiments. Typically, we observe that the monotonic evolution of elastic modulus shifts to lower aging times, while maxima in viscous moduli get progressively broader for experiments carried out on a later date after preparation (idle time) of the nanoclay suspension. Application of effective time theory produces a superposition of all the creep curves irrespective of their initial state. The resulting dependence of the relaxation time on aging time shows very strong hyper-aging dynamics at short idle times, which progressively weakens to demonstrate a linear dependence in the limit of very long idle times. Remarkably, this behavior of nanoclay suspensions is akin to that observed for polymeric glasses. Consideration of aging as a first-order process suggests that continued hyper-aging dynamics causes cessation of aging. The dependence of relaxation time on aging time, therefore, must attenuate eventually producing linear or weaker dependence on time in order to approach a progressively low-energy state in the limit of very long times as observed experimentally. We also develop a simple scaling model based on a concept of aging of an energy well, which qualitatively captures various experimental observations very well, leading to profound insight into the hyper-aging dynamics of nanoclay suspensions.  相似文献   

5.
Most nanodevices under investigation adopt a computational approach such as molecular dynamics simulations, which gives a numerical value for the potential energy as calculated from the interaction of every atom on one molecule with every atom on a second molecule. Although the simulation only involves short range atom–atom interactions and ignores those interactions at longer distances, the simulation still involves significant computational time. In this paper, we determine analytical formulae for four types of Lennard–Jones interactions: (i) a solid spherical nanoparticle with an atom, (ii) two distinct radii hollow spherical fullerenes, (iii) a solid spherical nanoparticle with a hollow spherical fullerene and (iv) two distinct radii solid spherical nanoparticles. The interaction energy using the 6–12 Lennard–Jones potential for these four situations are determined using the continuum approximation, which assumes that a discrete atomic structure can be replaced by either an average atomic surface density or an average atomic volume density. Using these formulae the computational time for a simulation might be dramatically reduced for those molecular interactions involving spherical nanoparticles or fullerenes. Such formulae might be exploited in hybrid analytical-computational numerical schemes, as well as in metallofullerenes and certain assumed spherical models of molecules such as methane and ammonia. As an illustration of the formulae presented here we determine both the most stable and the maximum radii of a solid spherical nanoparticle inside a fullerene, modelling the centre of a carbon onion or metallofullerenes. We also determine new cut-off formulae for interacting spherical nanoparticles and fullerenes which might be useful in computational schemes.  相似文献   

6.
A method for synthesizing iron-containing nanocomposite based on fibroporous polytetrafluoroethylene (PTFE) is described. Fibroporous PTFE obtained under the radiation of a CO2 laser on block PTFE is modified in supercritical carbon dioxide (sc CO2) to form micro- and nanoporous structures. Porous fluoropolymer is treated with a solution of bis(toluene)iron(0) obtained by metal-vapor synthesis (MVS). The composition and structure of iron-containing fluoropolymer is studied by transmission electron microscopy and X-ray photoelectron and Mössbauer spectroscopy. Fe nanoparticles with an average size of 9 nm, consisting of ~30% FeO and ~70% Fe3+, are registered in the sample. Fe0 nanoparticles are stabilized in fluoropolymer pores and are coated with nanoparticles of nonstoichiometric iron oxides that have superparamagnetic properties.  相似文献   

7.
《印度化学会志》2021,98(9):100112
Although studies on the interaction of atoms and molecules with external magnetic fields are more than 100 years old, beginning from the pre-quantum-mechanical days to the era of quantum mechanics, interest in the application of strong, static magnetic fields on atoms and molecules is only about three decades old. Although a great deal of insight has been obtained on the consequent changes in electronic structure and chemical bonds by such strong fields, the more realistic, dynamic, strong magnetic fields were not studied. Based on our own works in the last decade, we will discuss in this article how strong static as well as oscillating, strong magnetic fields on atoms and molecules affect electron density and chemical bonds. The dynamic fields generate completely new, hitherto unknown exciting phenomena. Our discussions will be based on three inter-linked, fundamental aspects of matter-external-magnetic-field interactions, viz., (1) action of static, strong magnetic fields as well as associated changes in electronic structure and the chemical bond, (2) Dynamics of electron density, and (3) Non-linear effects inherent in these interactions. Each aspect, although discussed separately for clarity, is a part of a larger intertwining picture.  相似文献   

8.
9.
The formation of agglomerates by salt-induced double layer compression of magnetic nanoparticles in the absence and presence of an external magnetic field was investigated experimentally as well as computationally in this study. The structures of the agglomerates were analyzed through scanning electron microscopy and proved to be highly porous and composed of large spaces among the branches of a convoluted network. In the absence of an external magnetic field, the branches of such a network were observed to be oriented in no particular direction. In contrast, when the agglomeration process was allowed to occur in the presence of an external magnetic field, these branches appeared to be oriented predominantly in one direction. A modified Discrete Element Method was applied to simulate the agglomeration process of magnetic nanoparticles both in the absence and presence of an external magnetic field. The simulations show that agglomeration occurred by the formation of random clusters of nanoparticles which then joined to form a network. In the presence of anisotropic magnetic forces, these clusters were rotated to align along the direction of the magnetic field and the final network formed consisted largely of elongated branches of magnetic nanoparticles.  相似文献   

10.
An inexpensive and versatile approach is reported for the synthesis of monodisperse magnetoresponsive rods of desired diameter, length, and magnetic susceptibility based on the confined alignment of magnetic beads in microchannels of selected channel height, followed by localized hydrolysis of sol-gel precursors within polyelectrolyte shells adsorbed on the beads. The layer-by-layer technique was used to coat the polystyrene beads with polyelectrolytes of alternating charge and with charged magnetic nanoparticles, and the polystyrene cores could be removed either by solvent dissolution or by calcination to form hollow-shelled chains. The reorientation dynamics of single and clustered chains following the application of an external magnetic field was evaluated theoretically, with favorable comparisons with the experimental data.  相似文献   

11.
邱星屏 《中国化学》2000,18(6):834-837
Magnetic nanoparticles with average diameter in the range of 6.4-8.3 nni have been synthesized by a chemical co-precipitation of Fe(Ⅱ)and Fe(Ⅲ)salts in 1.5 M NH4OH solution.The size of the magnetic particles is dependent on both temperature and the ionic strength of the iron ion solutions.The magnetic particles formed at higher temperature or lower ionic strength were slightly larger than those formed at lower temperature or higher ionic strength respectively.In spite of the different reaction conditions,all the resultant nanoparticles are nearly spherical and have a similar crystalline structure.At 300 K,such prepared nanoparticles are superparam-agnetic.The saturation magnetizations for 7.8 and 6.4 nm particles are 71 and 63 emu/g respectively,which are only ~ 20-30% less than the saturation magnetization(90 emu/g)of bulk Fe3O4 Our results indicated that a control of the reaction conditions could be used to tailor the size of magnetic nanoparticles in free precipitation.  相似文献   

12.
This work reports the study the structure, optical and magnetic properties of LaFeO3 nanoparticles synthesized by the polymerized complex method. The LaFeO3 nanoparticles were successfully obtained from calcination of the precursor at different temperatures from 750 to 1,050 °C in air for 2 h. The calcined LaFeO3 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Visible spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and vibrating sample magnetometry. The XRD and TEM results showed that all LaFeO3 samples had a single phase nature with the orthorhombic structure. The estimated crystallite sizes were in the range of 44.5 ± 2.4–74.1 ± 4.9 nm. UV–Vis spectra showed strong UV and Vis absorption with small band gap energy. The valence states of Fe ions were in the Fe3+ and Fe4+ state, as confirmed by XPS and XANES results. The weak ferromagnetic behavior with specific saturation magnetization of 0.1 emu/g at 10 kOe was obtained for the small particle of 44.5 ± 2.4 nm. The uncompensated spins at the surface was proposed as playing a part in the magnetic properties of small sized LaFeO3.  相似文献   

13.
Seriously aggregated LDH agglomerates can be dispersed by a hydrothermal treatment into homogeneous stable suspensions that contain LDH particles in the range of 50-300 nm.  相似文献   

14.
In this review an overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications. The potential future role of magnetic nanoparticles compared to other functional nanoparticles will be discussed by highlighting the possibility of integration with other nanostructures and with existing biotechnology as well as by pointing out the specific properties of magnetic colloids. Current limitations in the fabrication process and issues related with the outcome of the particles in the body will be also pointed out in order to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.  相似文献   

15.
Functionalization of monodisperse magnetic nanoparticles   总被引:1,自引:0,他引:1  
We report a new strategy for the preparation of monodisperse, water-soluble magnetic nanoparticles. Oleic acid-stabilized magnetic nanocrystals were prepared by the organic synthesis route proposed by Sun et al. (J. Am. Chem. Soc. 2004, 126, 273.), with size control obtained via seeded-mediated growth. The oleic groups initially present on the nanoparticle surfaces were replaced via ligand exchange reactions with various capping agents bearing reactive hydroxyl moieties. These hydroxyl groups were (i) exploited to initiate ring opening polymerization (ROP) of polylactic acid from the nanoparticle surfaces and (ii) esterified by acylation to permit the addition of alkyl halide moieties to transform the nanoparticle surfaces into macroinitiators for atom transfer radical polymerization (ATRP). By appropriate selection of the ligand properties, the nanoparticle surfaces can be polymerized in various solvents, providing an opportunity for the growth of a wide variety of water-soluble polymers and polylectrolyte brushes (both cationic and anionic) from the nanoparticle surfaces. The nanoparticles were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), electron microscopy, and light scattering. Light scattering measurements indicate that the nanoparticles are mostly present as individual nonclustered units in water. With pH-responsive polymers grown on the nanoparticle surfaces, reversible aggregation of nanoparticles could be induced by suitable swings in the pH between the stable and unstable regions.  相似文献   

16.
Recent advances in the synthesis of various magnetic nanoparticles using colloidal chemical approaches are reviewed. Typically, these approaches involve either rapid injection of reagents into hot surfactant solution followed by aging at high temperature, or the mixing of reagents at a low temperature and slow heating under controlled conditions. Spherical cobalt nanoparticles with various crystal structures have been synthesized by thermally decomposing dicobalt octacarbonyl or by reducing cobalt salts. Nanoparticles of Fe-Pt and other related iron or cobalt containing alloys have been made by simultaneously reacting their constituent precursors. Many different ferrite nanoparticles have been synthesized by the thermal decomposition of organometallic precursors followed by oxidation or by low-temperature reactions inside reverse micelles. Rod-shaped iron nanoparticles have been synthesized from the oriented growth of spherical nanoparticles, and cobalt nanodisks were synthesized from the thermal decomposition of dicobalt octacarbonyl in the presence of a mixture of two surfactants.  相似文献   

17.
Patterned deposition of nanoparticles is a prerequisite for the application of unique properties of nanoparticles in future nanodevices. Recent development of nanoxerography requires highly charged aerosol nanoparticles to avoid noise deposition due to random Brownian motion. However, it has been known that it is difficult to charge aerosol nanoparticles with more than two elementary charges. The goal of this work is to develop a simple technique for obtaining highly charged monodisperse aerosol nanoparticles by means of electrospray of colloidal suspension. Highly charged aerosol nanoparticles were produced by electrospraying (ES) and drying colloidal suspensions of monodisperse gold nanoparticles. Size and charge distributions of the resultant particles were measured. We demonstrate that this method successfully charges monodisperse nanoparticles very highly, e.g., 122 elementary charges for 25.0 nm, 23.5 for 10.5 nm, and 4.6 for 4.2 nm. The method described here constitutes a convenient, reliable, and continuous tool for preparing highly charged aerosol nanoparticles from suspensions of nanoparticles produced by either wet chemistry or gas-phase methods.  相似文献   

18.
19.
The formation of a colloidal suspension of nanoparticles was obtained, in a very simple manner, by transferring a solution of poly--caprolactone in a good solvent (L1) into a non-solvent (L2). Photon Correlation Spectroscopy (PCS) measurements confirmed by microscopic observations were used to determine the morphological aspects of the preparations. The influence of several factors on nanoprecipitation was examined: polymer concentration, L1/L2 ratio, dielectric constant of the final mixture. An experimental model of the phenomenon, which takes into account the flocculation concentration and the L1/L2 ratio, is proposed. It allows the optimal conditions for nanoparticles formation to be determined.  相似文献   

20.
A framework for performing event-driven, adaptive time step simulations of systems of rigid bodies interacting under stepped or terraced potentials in which the potential energy is only allowed to have discrete values is outlined. The scheme is based on a discretization of an underlying continuous potential that effectively determines the times at which interaction energies change. As in most event-driven approaches, the method consists of specifying a means of computing the free motion, evaluating the times at which interactions occur, and determining the consequences of interactions on subsequent motion for the terraced potential. The latter two aspects are shown to be simply expressible in terms of the underlying smooth potential. Within this context, algorithms for computing the times of interaction events and carrying out efficient event-driven simulations are discussed. The method is illustrated on a system composed of rigid rods in which the constituents interact via a terraced potential that depends on the relative orientations of the rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号