首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The best known works on the theory of permittivity of polar dielectrics are considered. Equations are obtained that relate the dipole moment of a molecule in a medium to substance permittivity and can be used in calculations of the polarization characteristics of rarefied gases and condensed polar dielectrics. The polarization characteristics of water are calculated.  相似文献   

2.
Methods for determining the substrate properties and the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface for unknown 5-layer symmetric and 3-layer asymmetric interferometers are presented. Both systems can be fully resolved without any known layer properties and without contact or confining the films. The method was tested using realistic simulated interferometer data, and was found to consistently yield accurate values for all desired properties. The method was experimentally validated through analysis of an asymmetric three layer interferometer system of linear polyethyleneimine (LPEI) adsorbed onto mica substrates of differing thickness and identical refractive index. The results were in excellent agreement with the dry polymer film properties measured using conventional SFA contact measurements. More complicated systems were also evaluated for feasibility, and any additional parameter specifications required for analysis were determined. The utility of this method is broad, as a single experiment in a laboratory setting can independently provide non-contact film properties and the effects of confinement on the film structure, which can be correlated to a simultaneously measured interaction force profile.  相似文献   

3.
In this paper the authors propose a novel method to study the local linear viscoelasticity of fluids confined between two walls. The method is based on the linear constitutive equation and provides details about the real and imaginary parts of the local complex viscosity. They apply the method to a simple atomic fluid undergoing zero mean oscillatory flow using nonequilibrium molecular dynamics simulations. The method shows that the viscoelastic properties of the fluid exhibit dramatic spatial changes near the wall-fluid boundary due to the high density in this region. It is also shown that the real part of the viscosity converges to the frequency dependent local shear viscosity sufficiently far away from the wall. This also provides valuable information about the transport properties in the fluid, in general. The viscosity is compared with predictions from the local average density model. The two methods disagree in that the local average density model predicts larger viscosity variations near the wall-fluid boundary than what is observed through the method presented here.  相似文献   

4.
We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.  相似文献   

5.
We propose a theory for the dielectric constant of materials made of parallel infinite one-dimensional chains of dipoles. Each dipole is allowed to rotate in three dimensions. Monte Carlo simulations show that the Kirkwood factor of the chain grows with increasing dipole moment much faster than in the case of three-dimensional polar fluids. With increasing dipole moment or cooling the one-dimensional chain undergoes a continuous order-disorder transition to the ferroelectric phase, in which the dielectric constant is limited by the size of ferroelectric domains along the chain.  相似文献   

6.
The high-frequency dielectric permittivity and losses of CsI solutions were studied at 288–323 K in the range of water dielectric permittivity dispersion (7–25 GHz). The low-frequency electrical conductivity of these solutions was measured, and ionic losses at high frequencies were calculated. The Debye or Cole-Cole relaxation model was used for describing the spectra. The low-frequency limits of these relaxation region were calculated, which are the static dielectric constants ɛS and well as dielectric relaxation times (τ) and activation enthalpies (ΔH ɛ++). The ɛS values decrease in going from water to a solution. In concentrated solutions, the slope of the plot of ɛS versus temperature become zero. The decrease in τ and gDH ɛ++ is evidence of the structure-breaking effect of ions on water. At elevated temperatures (313 K), the decrease in τ is minimal. At 323 K, τ slightly increases in going from water to a solution.  相似文献   

7.
Using grand ensemble simulations, we show that octamethyl-cyclo-tetra-siloxane (OMCTS) confined between two mica surfaces can form a variety of frozen phases which undergo solid-solid transitions as a function of the separation between the surfaces. For atomically smooth mica surfaces, the following sequence of transitions 1[triangle up] --> 1[triangle up]b --> 2B --> 2 square --> 2[triangle up] are observed in the one- and two-layered regimes, where n[triangle up], n[square], and nB denote triangular, square, and buckled phases, respectively, with the prefix n denoting the number of confined layers. The presence of potassium on mica is seen to have a strong influence on the degree of order induced in the fluid. The sequence of solid-solid transitions that occurs with the smooth mica surface is no longer observed. When equilibrated with a state point near the liquid-solid transition, a counterintuitive freezing scenario is observed in the presence of potassium. Potassium disrupts in-plane ordering in the fluid in contact with the mica surface, and freezing is observed only in the inner confined layers. The largest mica separations at which frozen phases were observed ranged from separations that could accommodate six to seven fluid layers. The extent of freezing and the square-to-triangular lattice transition was found to be sensitive to the presence of potassium as well as the thermodynamic conditions of the bulk fluid. The implications of our results on interpretation of surface force experiments as well as the generic phase behavior of confined soft spheres is discussed.  相似文献   

8.
We present a Ginzburg-Landau theory of ion-induced nucleation in a gas phase of polar one-component fluids, where a liquid droplet grows with an ion at its center. By calculating the density profile around an ion, we show that the solvation free energy is larger in gas than in liquid at the same temperature on the coexistence curve. This difference much reduces the nucleation barrier in a metastable gas.  相似文献   

9.
The dielectric permittivity of the nematic liquid crystalline mixture E7, doped with a low concentration of the photochromic material thiophene fulgide, was studied and compared with the properties of the pure E7. Fulgides are a group of thermally stable photochromic materials. On irradiation with ultraviolet light, a ring-closure occurs, giving an isomer which is stable if the dye is kept in the dark. The isomerism induces changes to the steric, dipolar and electronic conjugation properties of the species. A capacitive technique was used to determine the dielectric constants of the fulgide-doped liquid crystalline mixtures. The parallel and perpendicular components of dielectric constant were measured using a single cell, in the latter case in the presence of a magnetic field. Measurements were made on the photochromic system before and after ultraviolet irradiation and a marked variation in the dielectric properties of the mixture was observed. This was shown to be entirely due to the differences in phase transition temperatures between the irradiated and non-irradiated guest-host mixtures.  相似文献   

10.
The thermodynamic and structural behaviors of confined discrete-potential fluids are analyzed by computer simulations, studying in a systematic way the effects observed by varying the density, temperature, and parameters of the potentials that characterize the molecule-molecule interactions. The Gibbs ensemble simulation technique for confined fluids [A. Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)] is applied to a fluid confined between two parallel hard walls. Two different systems have been considered, both formed by spherical particles that differ by the interparticle pair potential: a square well plus square shoulder or a square shoulder plus square well interaction. These model interactions can describe in an effective way pair potentials of real molecular and colloidal systems. Results are compared with the simpler reference systems of square-shoulder and square-well fluids, both under confinement. From the adsorption characterization through the use of density profiles, it is possible to obtain specific values of the interparticle potential parameters that result in a positive to negative adsorption transition.  相似文献   

11.
The relationship between the complex dielectric permittivity tensor of a polar nematic liquid crystal and the autocorrelation matrix for the permanent dipole moment of a molecule is obtained. The theory is applicable to the whole frequency range which characterizes orientational relaxation in liquid crystals (up to ∼ 5 THz). The models of rotational diffusion and extended rotational diffusion in a mean field nematic potential are used to evaluate the dielectric absorption and dispersion in nematics.  相似文献   

12.
Spatial confinement modifies the microscopic structure of dense fluids, thereby inducing for example structural forces between the confining walls. However, confinement also modifies the fluids' density fluctuations, resulting in more elusive but equally important effects. In this brief review it is shown that both of these phenomena are naturally analyzed using the confined fluid's pair densities, which have recently become also experimentally accessible. Two particular topics are discussed, namely, the mechanisms of oscillatory density profiles and ensuing solvation forces in dense confined fluids as well as the behavior of liquids in solvophobic confinement.  相似文献   

13.
In this work, we develop a simple potential model for polar molecules which represents effectively and accurately the thermodynamics of dilute gases. This potential models dipolar interactions whose nonpolar part is either spherical, as in Stockmayer (SM) molecules, or diatomic, as for 2-center Lennard-Jones molecules (2CLJ). Predictions of the second virial coefficient for SM and polar 2CLJ fluids for various dipole moments and elongations agree very well with results of recent numerical calculations by C. Vega and co-workers (Phys. Chem. Chem Phys. 2002, 4, 3000). The model is used to predict the critical temperature of Stockmayer fluids for variable dipole moment and is applied to HCl as an example of a real polar molecule.  相似文献   

14.
Using event-driven molecular dynamics simulations, we quantify how the self diffusivity of confined hard-sphere fluids depends on the nature of the confining boundaries. We explore systems with featureless confining boundaries that treat particle-boundary collisions in different ways and also various types of physically (i.e., geometrically) rough boundaries. We show that, for moderately dense fluids, the ratio of the self diffusivity of a rough wall system to that of an appropriate smooth-wall reference system is a linear function of the reciprocal wall separation, with the slope depending on the nature of the roughness. We also discuss some simple practical ways to use this information to predict confined hard-sphere fluid behavior in different rough-wall systems.  相似文献   

15.
In this study, we report a systematic study of the response of a charged microparticle confined in an optical trap and driven by electric fields. The particle is embedded in a polar fluid, hence, the role of ions and counterions forming a double layer around the electrodes and the particle surface itself has been taken into account. We analyze two different cases: (i) electrodes energized by a step‐wise voltage (DC mode) and (ii) electrodes driven by a sinusoidal voltage (AC mode). The experimental outcomes are analyzed in terms of a model that combines the electric response of the electrolytic cell and the motion of the trapped particle. In particular, for the DC mode we analyze the transient particle motion and correlate it with the electric current flowing in the cell. For the AC mode, the stochastic and deterministic motion of the trapped particle is analyzed either in the frequency domain (power spectral density, PSD) or in the time domain (autocorrelation function). Moreover, we will show how these different approaches (DC and AC modes) allow us, assuming predictable the applied electric field (here generated by plane parallel electrodes), to provide accurate estimation (3%) of the net charge carried by the microparticle. Vice versa, we also demonstrate how, once predetermined the charge, the trapped particle acts as a sensitive probe to reveal locally electric fields generated by arbitrary electrode geometries (in this work, wire‐tip geometry).  相似文献   

16.
The structural and flow characteristics of fluids within carbon nanotube (CNT) is dictated by the interaction of fluid molecules within the nanocavity of CNT. Therefore, in the present study, dispersion corrected density functional theory has been used to investigate the structure and interaction of polar and nonpolar molecules within CNT. The present study shows that there is profound effect on the interaction due to dispersion. The interaction energy of the confined water was found to be reduced with increasing distance of the water molecule from the wall of the CNT. The water is preferentially adsorbed over methane due to stronger interaction with CNT over methane. Further, water is preferentially adsorbed over methanol molecule when interaction is calculated without dispersion but after inclusion of dispersion interaction, the calculated results show that the methanol–CNT interaction is stronger than that of water molecule and hence preferentially adsorbed within the CNT as revealed from MD simulation. The present calculation reveals that that the effect of CNT confinement on the IR spectra of the single file water is quite considerable compared to the IR spectra of tetrahedral bulk water cluster. Therefore, the present results might be useful for the separation of polar molecule from nonpolar molecule during fabrication of CNT‐based filter and purification system.  相似文献   

17.
Longitudinal and volume viscosities of Lennard-Jones fluid, argon–krypton binary mixture and isotopic fluid mixture confined to nanochannels of different widths are calculated by employing theoretical technique based on Green–Kubo formula. A significant enhancement is observed in longitudinal and volume viscosities when width of the nanochannel is less than 10 nm. Effect of mass ratio of two species on longitudinal and volume viscosities is also studied for equimolar isotopic fluid mixture. It is found that enhancement in viscosity is more for larger mass ratios. It is also noted that enhancement in longitudinal and shear viscosities is more than volume viscosity.  相似文献   

18.
We derive an analytical expression of the second virial coefficient of d-dimensional hard sphere fluids confined to slit pores by applying Speedy and Reiss' interpretation of cavity space. We confirm that this coefficient is identical to the one obtained from the Mayer cluster expansion up to second order with respect to fugacity. The key step of both approaches is to evaluate either the surface area or the volume of the d-dimensional exclusion sphere confined to a slit pore. We, further, present an analytical form of thermodynamic functions such as entropy and pressure tensor as a function of the size of the slit pore. Molecular dynamics simulations are performed for d = 2 and d = 3, and the results are compared with analytically obtained equations of state. They agree satisfactorily in the low density regime, and, for given density, the agreement of the results becomes excellent as the width of the slit pore gets smaller, because the higher order virial coefficients become unimportant.  相似文献   

19.
Dielectric permittivity (epsilon) and temperature effects on indirect spin-spin coupling constants were studied using acetonitrile as a probe molecule. Experiments were accompanied by hybrid DFT (density functional theory) studies, where the solvent was modeled using the polarization continuum model. Owing to its numerous types of J-couplings, acetonitrile is a very convenient molecule against which various basis sets can be tested or the best basis set can be selected for a given study. The results show reasonable agreement between calculated and experimental values. According to our data, scalar spin-spin coupling constants undergo substantial shifts at lower values of the dielectric constant. Thus J-coupling values are not transferable between measurements made at differing epsilon-conditions, and the assumption of the epsilon-independence of the J-coupling can lead to crucial mistakes in experiments using low-epsilon media. Dielectric permittivity also causes small geometric fluctuations within the molecule, which themselves can affect J-coupling values. Examinations of the results computed with frozen and relaxed geometries show that geometry mediation mostly affects the spin-dipole term of the J-coupling; hence, for accurate evaluation of the latter, frozen geometries are not acceptable. Another interesting fact revealed is the connection between the solvent dielectric properties and the temperature-dependence slopes of J-couplings in corresponding media.  相似文献   

20.
The RISM integral equation is extended to molecules with charged sites via a renormalization of the Coulomb potentials and the introduction of appropriate closure relations. For a fluid of diatomics with atomic charges of ±0.2 e the equation yields site-site correlation functions in qualitative agreement with those from computer simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号