首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibronically excited thioformaldehyde (H(2)CS) has been studied by two-color 1+1'+1' resonance enhanced multiphoton ionization (REMPI) spectroscopy, in which the C (1)B(2)0(0)(0) state of H(2)CS was selected as an intermediate state for the resonant excitation to high-lying electronic states at 62,000-72,000cm(-1). In light of the distinctive selection rules for the 1+1'+1' REMPI and one-photon direct absorption transitions excited from the C (1)B(2) and X (1)A(1) states of H(2)CS, respectively, we have been able to identify 1 valence state (npi, pi*(2)), and 14 Rydberg states (n, 5s), (pi, 4s), (n, 3d(xz)), (n, 3d(yz)), (n, 5p(z)), (n, 5p(x)), (n, 5p(y)), n,4d(z)2), (n, 4d(xz)), (n, 4d(yz)), (n, 6s), (pi, 4p(y)), (n, 6p(z)), and (n, 6p(y)), in this study.  相似文献   

2.
The electronic states of diazomethane in the region 3.00-8.00 eV have been characterized by ab initio calculations, and electronic transitions in the region 6.32-7.30 eV have been examined experimentally using a combination of 2 + 1 REMPI spectroscopy and photoelectron imaging in a molecular beam. In the examined region, three Rydberg states of 3p character contribute to the transitions, 2(1)A2(3p(y) <-- pi), 2(1)B1(3p(z) <-- pi), and 3(1)A1(3p(x) <-- pi). The former two states are of mostly pure Rydberg character and exhibit a resolved K structure, whereas the 3(1)A1(3p(x) <-- pi) state is mixed with the valence 2(1)A1(pi* <-- pi) state, which is unbound and is strongly predissociative. Analyses of photoelectron kinetic energy distributions indicate that the ground vibrational level of the 2(1)B1(3p(z)) state is mixed with the 2(1)A2(3p(y)) nu(9) level, which is of B1 vibronic symmetry. The other 2(1)A2(3p(y)) vibronic states exhibit pure Rydberg character, generating ions in single vibrational levels. The photoelectron spectra of the 3(1)A1(3p(x) <-- pi) state, on the other hand, give rise to many states of the ion as a result of strong mixing with the valence state, as evidenced also in the ab initio calculations. The equilibrium geometries of the electronic states of neutral diazomethane were calculated by CCSD(T), using the cc-pVTZ basis, and by B3LYP, using the 6-311G(2df,p) basis. Geometry and frequencies of the ground state of the cation were calculated by CCSD(T)/cc-pVTZ, using the unrestricted (UHF) reference. Vertical excitation energies were calculated using EOM-CCSD/6-311(3+,+)G* at the B3LYP optimized geometry. The theoretical results show that the 2(1)A2(3p(y) <-- pi) and 2(1)B1(3p(z) <-- pi) states have geometries similar to the ion, which has C(2v) symmetry, with slight differences due to the interactions of the electron in the 3p orbital with the nuclei charge distributions. The geometry of the 3(1)A1(3p(x) <-- pi) state is quite different and has Cs symmetry. The experimental and theoretical results agree very well, both in regard to excitation energies and to vibrational modes of the ion.  相似文献   

3.
Time-dependent density functional (TD-DFT) and perturbation theory-based outer valence Green functions (OVGF) methods have been tested for calculations of excitation energies for a set of radicals, molecules, and model clusters simulating points defects in silica. The results show that the TD-DFT approach may give unreliable results not only for diffuse Rydberg states, but also for electronic states involving transitions between MOs localized in two remote from each other spatial regions, for example, for charge-transfer excitations. For the. O-SiX(3) clusters, where X is a single-valence group, TD-DFT predicts reasonable excitation energies but incorrect sequence of electronic transitions. For a number of cases where TD-DFT is shown to be unreliable, the OVGF approach can provide better estimates of excitation energies, but this method also is not expected to perform universally well. The OVGF performance is demonstrated to be satisfactory for excitations with predominantly single-determinant wave functions where the deviations of the calculated energies from experiment should not exceed 0.1-0.3 eV. However, for more complicated transitions involving multiple bonds or for excited states with multireference wave functions the OVGF approach is less reliable and error in the computed energies can reach 0.5-1 eV.  相似文献   

4.
The absorption spectrum of jet-cooled CH(3)Cl was photographed from 165 to 117 nm (or 60,000 - 85,000 cm(-1), 7.5-10.5 eV) at a resolution limit of 0.0008 nm (0.3-0.6 cm(-1) or 0.04-0.08 meV). Even in the best structured region of the spectrum, from 70,000 to 85,000 cm(-1) (8.7-10.5 eV), observed bandwidths (full width at half maximum) are large, from 50 to 150 cm(-1). No rotational feature could be resolved. The spectrum is dominated by two strong bands near 9 eV, 140 nm, the D and E bands of Mulliken [J. Chem. Phys. 8, 382 (1940)] or the spectral region D of Price [J. Chem. Phys.4, 539 (1936)]. Their relative intensity is incompatible with previous assignments, namely, to a triplet and a singlet state belonging to the same configuration. On the basis of the present ab initio calculations, those bands are now assigned to two singlet states, the (1)A(1) and (1)E excited states resulting from the 2e(3)4pe Rydberg configuration. The present calculations also reveal that the two (1)E states issued from 2e(3)4sa(1) and 2e(3)4pa(1) are quasidegenerate and strongly mixed. They should be assigned to the two broad bands near 8 eV, 160 nm, the B and C bands of Mulliken and Price. Three vibrational modes are observed to be active: the CCl bond stretch nu(3)(a(1)), and the CH(3) umbrella and rocking vibrations, respectively, nu(2)(a(1)) and nu(6)(e). The fundamental frequencies deduced are well within the ranges defined by the corresponding values in the neutral and ion ground states. The possibility of a dynamical Jahn-Teller effect induced by the nu(6)(e) vibrational mode in the (1)E Rydberg states is discussed.  相似文献   

5.
The phosphorescence excitation (PE) spectrum of 4H-pyran-4-one (4PN) vapor at 40-50 degrees C was recorded near 366 nm. The most intense vibronic feature in this region of the spectrum is the T(1)(n,pi*)<--S(0) origin band. The value of nu(0) for the 0(0)(0) transition was determined to be 27 291.5 cm(-1) by comparing the observed spectrum to a simulation in the T(1)<--S(0) origin-band region. Attached to the origin band in the PE spectrum are several Deltav=0 sequence bands involving low-frequency ring modes. From the positions of these bands, together with the known ground-state combination differences, fundamental frequencies for nu(18') (ring bending), nu(13') (ring twisting), and nu(10') (in-plane ring deformation) in the T(1)(n,pi*) excited state were determined to be 126, 269, and 288 cm(-1), respectively. These values represent drops of 15%, 32%, and 43%, compared to the respective fundamental frequencies in the S(0) state. The changes in these ring frequencies indicate that the effects of T(1)(n,pi*)<--S(0) excitation extend beyond the nominal carbonyl chromophore and involve the conjugated ring atoms as well. The delocalization may be more extensive for T(1)(n,pi*) than for S(1)(n,pi*) excitation.  相似文献   

6.
Resonance-enhanced multiphoton ionization photoelectron spectroscopy has been applied to study the electronic spectroscopy and relaxation pathways among the 3p and 3s Rydberg states of trimethylamine. The experiments used femtosecond and picosecond duration laser pulses at wavelengths of 416, 266, and 208 nm and employed two-photon and three-photon ionization schemes. The binding energy of the 3s Rydberg state was found to be 3.087 +/- 0.005 eV. The degenerate 3p x, y states have binding energies of 2.251 +/- 0.005 eV, and 3p z is at 2.204 +/- 0.005 eV. Using picosecond and femtosecond time-resolved experiments we spectrally and temporally resolved an intricate sequence of energy relaxation pathways leading from the 3p states to the 3s state. With excitation at 5.96 eV, trimethylamine is found to decay from the 3p z state to 3p x, y in 539 fs. The decay to 3s from all the 3p states takes place with a 2.9 ps time constant. On these time scales, trimethylamine does not fragment at the given internal energies, which range from 0.42 to 1.54 eV depending on the excitation wavelength and electronic state.  相似文献   

7.
Ultraviolet (UV) photodissociation dynamics of jet-cooled SH radical (in X 2pi(3/2), nu"=0-2) is studied in the photolysis wavelength region of 216-232 nm using high-n Rydberg atom time-of-flight technique. In this wavelength region, anisotropy beta parameter of the H-atom product is approximately -1, and spin-orbit branching fractions of the S(3P(J)) product are close to S(3P2):S(3P1):S(3P0)=0.51:0.36:0.13. The UV photolysis of SH is via a direct dissociation and is initiated on the repulsive 2sigma- potential-energy curve in the Franck-Condon region after the perpendicular transition 2sigma(-)-X 2pi. The S(3P(J)) product fine-structure state distribution approaches that in the sudden limit dissociation on the single repulsive 2sigma- state, but it is also affected by the nonadiabatic couplings among the repulsive 4sigma-, 2sigma-, and 4pi states, which redistribute the photodissociation flux from the initially excited 2sigma- state to the 4sigma- and 4pi states. The bond dissociation energy D0(S-H)=29,245+/-25 cm(-1) is obtained.  相似文献   

8.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

9.
Reported herein is a combination of experimental and DFT/TDDFT theoretical investigations of the ground and excited states of 1,4,8,11,15,18,22,25-Octabutoxyphthalocyaninato-nickel(II), NiPc(BuO)(8), and the dynamics of its deactivation after excitation into the S(1)(pi,pi) state in toluene solution. According to X-ray crystallographic analysis NiPc(BuO)(8) has a highly saddled structure in the solid state. However, DFT studies suggest that in solution the complex is likely to flap from one D(2)(d)-saddled conformation to the opposite one through a D(4)(h)-planar structure. The spectral and kinetic changes for the complex in toluene are understood in terms of the 730 nm excitation light generating a primarily excited S(1) (pi,pi) state that transforms initially into a vibrationally hot (3)(d(z)2,d(x)2(-)(y)2) state. Cooling to the zeroth state is complete after ca. 8 ps. The cold (d,d) state converted to its daughter state, the (3)LMCT (pi,d(x)2(-)(y)2), which itself decays to the ground state with a lifetime of 640 ps. The proposed deactivation mechanism applies to the D(2)(d)-saddled and the D(4)(h)-planar structure as well. The results presented here for NiPc(BuO)(8) suggest that in nickel phthalocyanines the (1,3)LMCT (pi,d(x)2(-)(y)2) states may provide effective routes for radiationless deactivation of the (1,3)(pi,pi) states.  相似文献   

10.
Infrared data in the nu(CO) region (1800-2150 cm(-1), in acetonitrile at 298 K) are reported for the ground (nu(gs)) and polypyridyl-based, metal-to-ligand charge-transfer (MLCT) excited (nu(es)) states of cis-[Os(pp)2(CO)(L)](n)(+) (pp = 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy); L = PPh3, CH(3)CN, pyridine, Cl, or H) and fac-[Re(pp)(CO)3(4-Etpy)](+) (pp = phen, bpy, 4,4'-(CH3)2bpy, 4,4'-(CH3O)2bpy, or 4,4'-(CO2Et)2bpy; 4-Etpy = 4-ethylpyridine). Systematic variations in nu(gs), nu(es), and Delta(nu) (Delta(nu) = nu(es) - nu(gs)) are observed with the excited-to-ground-state energy gap (E(0)) derived by a Franck-Condon analysis of emission spectra. These variations can be explained qualitatively by invoking a series of electronic interactions. Variations in dpi(M)-pi(CO) back-bonding are important in the ground state. In the excited state, the important interactions are (1) loss of back-bonding and sigma(M-CO) bond polarization, (2) pi(pp*-)-pi(CO) mixing, which provides the orbital basis for mixing pi(CO)- and pi(4,4'-X(2)bpy)-based MLCT excited states, and (3) dpi(M)-pi(pp) mixing, which provides the orbital basis for mixing pipi- and pi(4,4'-X(2)bpy*-)-based MLCT states. The results of density functional theory (DFT) calculations on the ground and excited states of fac-[Re(I)(bpy)(CO)3(4-Etpy)](+) provide assignments for the nu(CO) modes in the MLCT excited state. They also support the importance of pi(4,4'-X2bpy*-)-pi(CO) mixing, provide an explanation for the relative intensities of the A'(2) and A' ' excited-state bands, and provide an explanation for the large excited-to-ground-state nu(CO) shift for the A'(2) mode and its relative insensitivity to variations in X.  相似文献   

11.
A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.  相似文献   

12.
(2+1) resonance-enhanced multiphoton ionization spectra of jet-cooled trans-1,2-dibromoethylene are reported for the first time. The two-photon spectral region between 149.7 and 141.2 nm was examined. A 4p(z)<--pi Rydberg transition between 66,800 and 68,000 cm(-1) with A(g) excited state symmetry was analyzed, as well as two 4f<--pi Rydberg transitions with B(g) excited state symmetry and one 4f<--pi Rydberg transition with A(g) excited state symmetry between 68,000 and 70,800 cm(-1). All Rydberg transitions observed in this work belong to series that converge to the first ionization potential of the molecule. The short vibrational progressions observed involve two totally symmetric in-plane normal modes: C=C-H bending (nu(3)) and C=C-Br bending (nu(5)) with average excited state frequencies of 829 and 226 cm(-1), respectively.  相似文献   

13.
We have measured the infrared (IR) vibrational spectrum for cis-dichloroethene (cis-ClCH[Double Bond]CHCl) in excited Rydberg states with the effective principal quantum numbers n(*)=9, 13, 17, 21, 28, and 55 using the vacuum ultraviolet-IR-photoinduced Rydberg ionization (VUV-IR-PIRI) scheme. Although the IR frequencies observed for the vibrational bands nu(11) (*) (asymmetric C-H stretch) and nu(12) (*) (symmetric C-H stretch) are essentially unchanged for different n(*) states, suggesting that the IR absorption predominantly involves the ion core and that the Rydberg electron behaves as a spectator; the intensity ratio for the nu(11) (*) and nu(12) (*) bands [R(nu(11) (*)nu(12) (*))] is found to decrease smoothly as n(*) is increased. This trend is consistent with the results of a model ab initio quantum calculation of R(nu(11) (*)nu(12) (*)) for excited cis-ClCH[Double Bond]CHCl in n(*)=3-18 states and the MP26-311++G(2df,p) calculations of R(nu(11)nu(12)) and R(nu(11) (+)nu(12) (+)), where R(nu(11)nu(12))[R(nu(11) (+)nu(12) (+))] represents the intensity ratio of the nu(11)(nu(11) (+)) asymmetric C-H stretching to the nu(12)(nu(12) (+)) symmetric C-H stretching vibrational bands for cis-ClCH[Double Bond]CHCl (cis-ClCH[Double Bond]CHCl(+)). We have also measured the IR-VUV-photoion (IR-VUV-PI) and IR-VUV-pulsed field ionization-photoelectron depletion (IR-VUV-PFI-PED) spectra for cis-ClCH[Double Bond]CHCl. These spectra are consistent with ab initio calculations, indicating that the IR absorption cross section for the nu(12) band is negligibly small compared to that for the nu(11) band. While the VUV-IR-PIRI measurements have allowed the determination of nu(11) (+)=3067+/-2 cm(-1), nu(12) (+)=3090+/-2 cm(-1), and R(nu(11) (+)nu(12) (+)) approximately 1.3 for cis-ClCH=CHCl(+), the IR-VUV-PI and IR-VUV-PFI-PED measurements have provided the value nu(11)=3088.5+/-0.2 cm(-1) for cis-ClCH=CHCl.  相似文献   

14.
The characters, dynamics, and relaxation pathways of low-lying excited states of the complexes [W(CO)(5)L] [L = 4-cyanopyridine (pyCN) and piperidine (pip)] were investigated using theoretical and spectroscopic methods. DFT calculations revealed the delocalized character of chemically and spectroscopicaly relevant molecular orbitals and the presence of a low-lying manifold of CO pi-based unoccupied molecular orbitals. Traditional ligand-field arguments are not applicable. The lowest excited states of [W(CO)(5)(pyCN)] are W --> pyCN MLCT in character. They are closely followed in energy by W --> CO MLCT states. Excitation at 400 or 500 nm populates the (3)MLCT(pyCN) excited state, which was characterized by picosecond time-resolved IR and resonance Raman spectroscopy. Excited-state vibrations were assigned using DFT calculations. The (3)MLCT(pyCN) excited state is initially formed highly excited in low-frequency vibrations which cool with time constants between 1 and 20 ps, depending on the excitation wavelength, solvent, and particular high-frequency nu(CO) or nu(CN) mode. The lowest excited states of [W(CO)(5)(pip)] are W --> CO MLCT, as revealed by TD-DFT interpretation of a nanosecond time-resolved IR spectrum that was measured earlier in a low-temperature glass (Johnson, F. P. A.; George, M. W.; Morrison, S. L.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1995, 391-393). MLCT(CO) excitation involves transfer of electron density from the W atom and, to a lesser extent, the trans CO to the pi orbitals of the four cis CO ligands. Optical excitation into MLCT(CO) transition of either complex in fluid solution triggers femtosecond dissociation of a W-N bond, producing [W(CO)(5)(solvent)]. It is initially vibrationally excited both in nu(CO) and anharmonicaly coupled low-frequency modes. Vibrational cooling occurs with time constants of 16-22 ps while the intramolecular vibrational energy redistribution from the v = 1 nu(CO) modes is much slower, 160-220 ps. No LF excited states have been found for the complexes studied in a spectroscopically relevant range up to 6-7 eV. It follows that spectroscopy, photophysics, and photochemistry of [W(CO)(5)L] and related complexes are well described by an interplay of close-lying MLCT(L) and MLCT(CO) excited states. The high-lying LF states play only an indirect photochemical role by modifying potential energy curves of MLCT(CO) states, making them dissociative.  相似文献   

15.
A difference was observed in the reactivity of alcohols and ethers toward free electrons. Whereas the lowest core-excited state of the negative ion-a (2)(n,3s(2)) Feshbach resonance-of the alcohols readily dissociates by losing a hydrogen atom, ethers show no observable signal from this resonance. This difference in reactivity has a parallel in the anomalous shapes and energies of the parent states of the Feshbach resonances, the (1)(n,3s) Rydberg states of the neutral alcohols. We explained this anomaly using potential surfaces of the alcohols and ethers calculated using the TD-DFT method as a function of the dissociation coordinate. The lowest excited state of alcohols was found to be repulsive, whereas a barrier to dissociation was found in the ethers. Rydberg-valence mixing and avoided crossings are decisive in determining the shapes of the potential surfaces. It is concluded that the reactivities of alcohols and ethers toward free electrons are rationalized by assuming that the potential surfaces of the daughter Feshbach resonances closely follow those of the parent Rydberg states, i.e., the lowest Feshbach resonance is repulsive, but a barrier occurs in ethers. The potential surfaces of both the Rydberg states and the Feshbach resonances thus differ dramatically from the non-dissociative surface of the grandparent (2)(n(-1)) positive ions, despite the nominally non-bonding character of the Rydberg electrons.  相似文献   

16.
Two new complexes fac-[Re(NCS)(CO)3(N,N)] (N,N = 2,2'-bipyridine (bpy), di-iPr-N,N-1,4-diazabutadiene (iPr-DAB)) were synthesized and their molecular structures determined by X-ray diffraction. UV-vis absorption, resonance Raman, emission, and picosecond time-resolved IR spectra were measured experimentally and calculated with TD-DFT. A good agreement between experimental and calculated ground- and excited-state spectra is obtained, but only if the solvent (MeCN) is included into calculations and excited state structures are fully optimized at the TD-DFT level. The lowest excited states of the bpy and iPr-DAB complexes are assigned by TD-DFT as 3aA' by comparison of calculated and experimental IR spectra. Excited-state lifetimes of 23 ns and ca. 625 ps were determined for the bpy and DAB complex, respectively, in a fluid solution at room temperature. Biexponential emission decay (1.3, 2.7 micros) observed for [Re(NCS)(CO)3(bpy)] in a 77 K glass indicates the presence of two unequilibrated emissive states. Low-lying electronic transitions and excited states of both complexes have a mixed NCS --> N,N ligand-to-ligand and Re --> N,N metal-to-ligand charge-transfer character (LLCT/MLCT). It originates in mixing between Re d(pi) and NCS pi characters in high-lying occupied MOs. Experimentally, the LLCT/MLCT mixing in the lowest excited state is manifested by shifting the nu(CO) and nu(NC) IR bands to higher and lower wavenumbers, respectively, upon excitation. Resonant enhancement of both nu(CO) and nu(NC) Raman bands indicates that the same LLCT/MLCT character mixing occurs in the lowest allowed electronic transition.  相似文献   

17.
The vertical absorption spectrum and photodissociation mechanism of vinyl chloride (VC) were studied by using symmetry-adapted cluster configuration interaction theory. The important vertical pi --> pi* excitation was intensively examined with various basis sets up to aug-cc-pVTZ augmented with appropriate Rydberg functions. The excitation energy for pi --> pi* transition obtained in the present study, 6.96 eV, agrees well with the experimental value, 6.7-6.9 eV. Calculated excitation energies along with the oscillator strengths clarify that the main excitation in VC is the pi --> pi* excitation. Contrary to the earlier theoretical reports, the results obtained here support that the C-Cl bond dissociation takes place through the n(Cl-)sigma(C-Cl)* state.  相似文献   

18.
Sulfur difluoride radicals in their ground state have been produced by a "laser-free" pulsed dc discharge of the SF6Ar gas mixtures in a supersonic molecular beam and detected by mass-selective resonance-enhanced multilphoton ionization (REMPI) spectroscopy in the wavelength range of 408-420 nm. Analyses of the (3+1) REMPI excitation spectrum have enabled identification of three hitherto unknown Rydberg states of this radical. Following the Rydberg state labeling in our previous work [see J. Phys. Chem. A 102, 7233 (1998)], these we label the K(5p1) [nu 0-0=71 837 cm(-1), omega'1(a1 sym str)=915 cm(-1)], L(5p2) [nu 0-0=72 134 cm(-1), omega'1(a1 sym str)=912 cm(-1)], and M(5p3) [nu 0-0=72 336 cm(-1), omega'1(a1 sym str)=926 cm(-1)] Rydberg states, respectively. [Origins, relative to the lowest vibrational level of the X 1A1 ground state, and vibrational frequencies of the symmetric S-F stretching mode are suggested by the numbers in brackets.] Photofragmentation process of SF2+-->SF+ +F that relates to the REMPI spectrum was discussed.  相似文献   

19.
Two-dimensional photoelectron spectroscopy of hydrogen iodide (HI) has been performed in the photon energy region of 11.10-14.85 eV, in order to investigate dynamical properties on autoionization and neutral dissociation of Rydberg states HI*(RA) converging to HI+(A 2Sigma1/2(+)). A two-dimensional photoelectron spectrum exhibits strong vibrational excitation of HI+(X 2Pi) over a photon energy region from approximately 12 to 13.7 eV, which is attributable to the autoionizing feature of the 5 dpi HI*(RA) state. A noticeable set of stripes in the photon energy region of 13.5-14.5 eV is assigned as resulting from autoionization of the atomic Rydberg states of I* converging to I+ (3P0 or 3P1). The formation of I* is understood in terms of predissociation of multiple HI*(RA) states by way of the repulsive Rydberg potential curves converging to HI+(4Pi1/2).  相似文献   

20.
The absolute cross sections (CSs) for electronic excitations of cytosine by electron impact between 5 and 18 eV were measured by electron-energy-loss (EEL) spectroscopy of the molecule deposited at low coverage on an inert Ar substrate. The lowest EEL features found at 3.55 and 4.02 eV are ascribed to transitions from the ground state to the two lowest triplet 1?(3)A(')(π→π(?)) and 2?(3)A(')(π→π(?)) valence states of the molecule. Their energy dependent CSs exhibit essentially a common maximum at about 6 eV with a value of 1.84×10(-17)?cm(2) for the former and 4.94×10(-17)?cm(2) for the latter. In contrast, the CS for the next EEL feature at 4.65 eV, which is ascribed to the optically allowed transition to the 2?(1)A(')(π→π(?)) valence state, shows only a steep rise to about 1.04×10(-16)?cm(2) followed by a monotonous decrease with the incident electron energy. The higher EEL features at 5.39, 6.18, 6.83, and 7.55 eV are assigned to the excitations of the 3?(3,1)A(')(π→π(?)), 4?(1)A(')(π→π(?)), 5?(1)A(')(π→π(?)), and 6?(1)A(')(π→π(?)) valence states, respectively. The CSs for the 3?(3,1)A(') and 4?(1)A(') states exhibit a common enhancement at about 10 eV superimposed on a more or less a steep rise, reaching, respectively, a maximum of 1.27 and 1.79×10(-16)?cm(2), followed by a monotonous decrease. This latter enhancement and the maximum seen at about 6 eV in the lowest triplet states correspond to the core-excited electron resonances that have been found by dissociative electron attachment experiments with cytosine in the gas phase. The weak EEL feature found at 5.01 eV with a maximum CS of 3.8×10(-18)?cm(2) near its excitation threshold is attributed to transitions from the ground state to the 1?(3,1)A(")(n→π(?)) states. The monotonous rise of the EEL signal above 8 eV is attributed to the ionization of the molecule. It is partitioned into four excitation energy regions at about 8.55, 9.21, 9.83, and 11.53 eV, which correspond closely to the ionization energies of the four highest occupied molecular orbitals of cytosine. The sum of the ionization CS for these four excitation regions reaches a maximum of 8.1×10(-16)?cm(2) at the incident energy of 13 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号