首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly developed photoion-photoelectron Vacuum-UV coincidence spectrometer has been coupled to a supersonic metal atom cluster beam source and has been used to investigate the electronic structure of isolated mercury clusters in the size range from 1 to 110 at several selected discrete excitation energies between 11.3 and 7.1 eV. Excitation of the van der Waals cluster Hg10 at the center of the strongD 3/2-autoionization line at 10.7 eV yields a photoelectron kinetic energy distribution between 0 and 2.5 eV indicating the population of Hg10 ionic states, which are also accessible by threshold ionization.  相似文献   

2.
The vibrational spectra of Ag(3) and Ag(4) are recorded in the far-infrared between 100 and 220 cm(-1) using multiple photon dissociation spectroscopy of their complexes with Ar atoms. For Ag(3)-Ar two IR active bands are found at 113 and 183 cm(-1), for Ag(4)-Ar one band at 163 cm(-1) and very weak IR activity at 193 cm(-1) are observed. This, together with recent theoretical studies, allows for a reassignment of the controversial vibrational data reported earlier for the bare Ag(3) cluster. The influence of the number of Ar atoms in the complexes on the frequency of the IR active modes is found to be minor. However, the low-frequency IR-active band of Ag(3) shifts with increasing Ar coverage from 113 cm(-1) for Ag(3)-Ar to about 120 cm(-1) for Ag(3)-Ar(4), the value known for Ag(3) embedded in rare gas matrices.  相似文献   

3.
Studies of the electronic and geometric structure of free clusters are presented to highlight the application of core-level spectroscopy using synchrotron radiation to cluster physics. The study of electronic structure deals with the excitation of the C 1s electron to the Rydberg states of the molecule in CH4 clusters and demonstrates the gradual evolution of the surface and bulk-specific spectral features with cluster size. A second study investigates the K-edge excitations in Ne clusters and is concerned with extracting structural information from the X-rays Absorption Near-Edge Structure (XANES).  相似文献   

4.
The optical absorption spectrum of small lithium clusters has been measured up to Li8. In Li3 high resolution Two Photon Ionization (TPI) spectra have been recorded allowing us to determine the geometry and potential surfaces of the ground and excited states. In larger clusters, the excited states are dissociative and the absorption spectra have been obtained by Depletion Spectroscopy. Vibronic resolution is still achieved in Li4, but not in larger clusters. The measured spectra exhibit a rather small number of transitions to electronically excited states. In Li7, only one intense band is observed in the blue region, while in Li8, an intense band is also observed in the blue region and a much weaker band in the red region. All the obtained results are in very good agreement with the ab initio calculation of Bonacic-Koutecky et al. This demonstrates that molecular effects are always present in these small clusters. The semi-classical models of surface plasma resonances are also discussed.  相似文献   

5.
Theoretical models of lineshapes in Ar2p photoionization spectra have been calculated for free, neutral argon clusters of different sizes. The lineshape models are fitted to experimental spectra and used to estimate the mean cluster size realized in the experiment. The results indicate that size estimators working from stagnation conditions [R. Karnbach, M. Joppien, J. Stapelfeldt, J. W?rmer and T.M?ller, Rev. Sci. Instrum., 1993, 64, 2838] may underestimate the mean cluster size.  相似文献   

6.
A new apparatus for measuring the magnetic properties of metal clusters has been constructed. The technique involves the conventional Stern-Gerlach deflection scheme together with modern pulsed laser vaporization source technology and time of flight mass spectrometry. High field seeking monodirectional deflections have been measured for cobalt clusters containing between 40 and 400 atoms. The measured magnetic moments per atom are found to be lower than the known values for the bulk. Special attention has been given to velocity measurements of the metal clusters and the carrier gas atoms in the beam. The residence time of the particles in the source cavity has been measured.  相似文献   

7.
Vibrational predissociation spectra of rare-gas-tagged [(CeO(2))(VO(2))(1-2)](+) and [(Ce(2)O(3))(VO(2))](+) clusters are measured in the 400-1200 cm(-1) region. Density functional theory (DFT) is used to determine the geometric and electronic structure of low-energy isomers of the partially reduced clusters. Comparison of experimental and simulated spectra provides evidence for the larger stability of Ce(+3)/V(+5) compared to that of Ce(+4)/V(+4), which confirms that the exceptionally high reducibility of Ce(+4) accounts for the promoting role of ceria in supported vanadium oxide catalysts.  相似文献   

8.
Supported metal catalysts,in which the metal is usually finely dispersed into nanoparticles(NPs)in size of a few nanometers on high-surface-area materials,are the workhorses in heterogeneous catalysis and have been extensively used in various key industrial processes[1].However,the surface heterogeneity arising from the uneven size distribution as well as the lower atomic efficiency derived from the presence of unexposed interior atoms of metal NPs often leads to inferior activity/selectivity.  相似文献   

9.
Neutral vanadium oxide clusters are studied by photoionization time-of-flight (TOF) mass spectroscopy, electronic spectroscopy, and density functional theory (DFT) calculations. Mass spectra of vanadium oxide clusters are observed by photoionization with lasers of three different wavelengths: 118, 193, and 355 nm. Mechanisms of 118 nm single photon ionization and 193 and 355 nm multiphoton ionization/fragmentation of vanadium oxide clusters are discussed on the basis of observed mass spectral patterns and line widths of the mass spectral features. Only the 118 nm laser light can ionize vanadium oxide neutral species by single photon ionization without fragmentation. The stable vanadium oxide neutral clusters under saturated oxygen growth conditions are found to be of the form (VO2)x(V2O5)y. Structures of the first few members of this series of clusters are determined through high level DFT calculations. Fragmentation of this series of clusters through 355 and 193 nm multiphoton ionization processes is discussed in light of these calculated structures. The B(2)B2 <-- X(2)A1 transition is observed for the VO2 neutral species, and nu1 and nu2 vibrations are assigned for both electronic states. From this spectrum, the VO2 rotational and vibrational temperatures are found to be approximately 50 and approximately 700 K, respectively.  相似文献   

10.
The magnetic properties of molecular metal cluster compounds resemble those of small metal particles in the metametallic size regime. Even-electron metal carbonyl clusters with 10 or more metal atoms are paramagnetic, because their frontier orbital separations of less than 1 eV lead to high-spin electronic configurations. The rhodium cluster [Rh17S2(CO)32]3? gives EPR below 200 K withg=2.04, the first example of this type of paramagnetism in an even-electron carbonyl cluster of this 4d metal. Its spectral parameters are compared with those of osmium carbonyl clusters and some significant differences highlighted. Attempts have also been made to generate radical cations from lower-nuclearity, diamagnetic molecular clusters such as Rh6(CO)16 by chemical oxidation in sulphuric acid. An EPR active species (g=2.09) believed to be [Rh6(CO)16]+ has been obtained.  相似文献   

11.
Small sodium and silver particles were generated on dielectric substrates like LiF, quartz and sapphire under ultrahigh vacuum conditions. The optical transmission spectra of the clusters were measured as a function of cluster size and shape, for low and high substrate temperatures as well as for s- and p- polarization of the incident light. Excitation of dipolar surface plasmon oscillations in the directions normal and parallel to the substrate surface could be identified. Furthermore, optical spectra for Na and Ag clusters were calculated with the classical Mie theory. The measured spectra vary strongly if the experimental conditions are changed and can be exploited, for example, to characterize the particles with regard to their size and shape. In particular, the axial ratio of the spheroidal clusters could be determined. Its value is considerably different for the two investigated metals and depends on the substrate material. Furthermore, the temperature of the substrate has a pronounced influence on the shape of the particles. At low temperature of T=100 K two-dimensional island growth is predominant. The particles extend only little in the direction perpendicular to the surface and coalesce readily at small coverage of metal atoms. In contrast, the clusters are truly three-dimensional at T=300 K. At this stage, sodium particles still exhibit a rather small axial ratio whereas silver clusters appear almost spherical. Thus, measurements of the optical spectra permit direct in situ monitoring of cluster growth during the nucleation of adsorbed atoms and of temperature induced shape variations. In addition to investigations of the shape of the particles, the quadrupolar surface plasmon mode was observed for Ag clusters.  相似文献   

12.
The adsorption of H2 on a series of gas-phase transition metal (scandium, vanadium, iron, cobalt, and nickel) clusters containing up to 20 metal atoms is studied using IR-multiple photon dissociation spectroscopy complemented with density functional theory based calculations. Comparison of the experimental and calculated spectra gives information on hydrogen-bonding geometries. The adsorption of H2 is found to be exclusively dissociative on Sc(n)O+, V(n)+, Fe(n)+, and Co(n)+, and both atomic and molecularly chemisorbed hydrogen is present in Ni(n)H(m)+ complexes. It is shown that hydrogen adsorption geometries depend on the elemental composition as well as on the cluster size and that the adsorption sites are different for clusters and extended surfaces. In contrast to what is observed for extended metal surfaces, where hydrogen has a preference for high coordination sites, hydrogen can be both 2- or 3-fold coordinated to cationic metal clusters.  相似文献   

13.
某些芳香族羟肟一过渡金属配合物的红外光谱   总被引:1,自引:0,他引:1  
周澄明  陈星  袁承业 《化学学报》1983,41(7):623-629
The preparation and infrared spectroscopic studies of coordination compounds of salicylaldoxime, 2-hydroxy-acetophenone oxime, 2-hydroxy-benzophenone oxime and 2-hydroxy-4-methoxy-benzophenone oxime with copper (II), nickel (II), cobalt (II) and iron (II) have been described. The frquency of the C=N stretching vibration is usually higher in the complex than that in the ligand. The higher the frequency of the C=N vibration is, the larger the stability constant of the complex will be, but there is no quantitative relationship. In the case of complexes of salicylaldoxime with Cu, Ni, Co and Fe, &CC=N values are correlated linearly with the ionization potentials of the central metal ions. The frequency of the OH stretching vibration is closely related to the geometric configuration of the complex. Thus aromatic hydroxyoximes form coordination compound with Co (II) and Fe (II) with cis configuration possessing six membered stronger hydrogen bonding ring. This is indicated in the infrared spectra by the complete absence of the absorption band due to the OH stretching vibration, or by the appearance of an extremely broad and flat band of very low intensity. However, Cu (II) or Ni (II) complex possesses trans configuration with five membered hydrogen-bonding bridge showing characteristic OH absorption band in the infrared region. The &COH of complex investigated is closely related to the polar nature of the substituents on the benzene ring. By examining the spectra of Cu-63 and Cu-65 complexes with 2-hydroxy-4(5)-substituted benzophenone oximes, the characteristic frequencies of M -- O and M -- N in the far infrared region were assigned for a series of aromatic hydroxyoxime-transition metal complexes.  相似文献   

14.
The preparation and infrared spectroscopic studies of coordination compounds of salicylaldoxime, 2-hydroxy-acetophenone oxime, 2-hydroxy-benzophenone oxime and 2-hydroxy-4-methoxy-benzophenone oxime with copper (II), nickel (II), cobalt (II) and iron (II) are described. The frequency of the C=N stretching vibration is usually higher in the complex than that in the ligand. The higher this frequency is, the larger the stability constant of the complex will be, but there is no quantitative relationship. In the case of complexes of salicylaldoxime with Cu (II), Ni (II), Co (II) and Fe (II), vO=N values are correlated linearly with the ionization potentials of the central metal ions. The frequency of the OH stretching vibration is closely related to the geometric configuration of the complex. Thus aromatic hydroxyoximes form coordination compounds with Co (II) and Fe (II) with cis configuration possessing six-membered hydrogen-bonded ring. This is indicated in the infrared spectra by the complete absence of the OH stretching band, or by the appearance of an extremely broad and flat band of very low intensity. However, Cu (II) or Ni (II) complex possesses trans configuration with five-membered hydrogen-bonded bridge showing characteristic OH absorption band in the infrared region. The voh's of complexes investigated are closely related to the polar nature of substituents on the benzene ring. By examining the spectra of 63Cu and 65Cu complexes with 2-hydroxy-4(5)-substituted benzophenone oximes in the far infrared region, the characteristic frequency of M-O and M-N were assigned for a series of aromatic hydroxyoxime-transition metal complexes.  相似文献   

15.
The IR spectra for various sizes of pyrrole clusters were measured in the NH stretching vibration region by infrared cavity ringdown spectroscopy. The hydrogen-bonded structures and normal modes of the pyrrole clusters were analyzed by a density functional theory calculation of the B3LYP/6-311+G(d,p) level. Two types of pulsed nozzles, a slit and a large pinhole, were used to generate different cluster size distributions in a supersonic jet. A rotational contour analysis of the NH stretching vibration for the monomer revealed that the slit nozzle provides a warmer jet condition than the pinhole one. The IR spectra, measured under the warmer condition, showed the intense bands at 3444, 3392, and 3382 cm(-1), which were assigned to hydrogen-bonded NH stretching vibrations due to the dimer, the trimer, and the tetramer, respectively. On the other hand, the IR spectra measured under a lower temperature condition by a pinhole nozzle showed a broad absorption feature in addition to sharp bands. This broad absorption was reproduced by the sum of two Gaussians peaks at 3400 and 3372 cm(-1) with widths of 30 and 50 cm(-1) (FWHM), respectively. Compared with the spectra of the condensed phase, two bands at 3400 and 3372 cm(-1) were assigned to hydrogen-bonded NH stretching vibrations of larger clusters having liquid-like and solid-like structures, respectively.  相似文献   

16.
A high sensitivity spectroscopy is employed to detect vibrational antiitions of ethanol neutrals and ions in a supersonic expansion. The infrared (IR) features located at 3682 and 3667 cm(-1) can be assigned to the OH stretch for the two neutral C(2)H(5)OH conformers, anti and gauche, respectively. Their overtone energies located at 7179 (anti) and 7141 (gauche) cm(-1) are also identified. The OH fundamental stretch for ethanol ions is redshifted around 210 cm(-1), while the CH stretch modes are unchanged for neutral and ionic C(2)H(5)OH at around 2900-3000 cm(-1). The charge on the ethanol ion is apparently localized on the oxygen atom. IR induced photodissociation spectroscopy is applied to the study of neutral and protonated ethanol clusters. Neutral and protonated ethanol cluster vibrations are observed. The CH modes are not perturbed by the clustering process. Neutral clusters display only hydrogen bonded OH features, while the protonated ionic clusters display both hydrogen bonded and non-hydrogen-bonded features. These spectroscopic results are analyzed to obtain qualitative structural information on neutral and ionic ethanol clusters.  相似文献   

17.
Hydrated trivalent rare earth metal ions containing yttrium and all naturally abundant lanthanide metals are formed using electrospray ionization, and the structures and reactivities of these ions containing 17-21 water molecules are probed using blackbody infrared radiative dissociation (BIRD) and infrared action spectroscopy. With the low-energy activation conditions of BIRD, there is an abrupt transition in the dissociation pathway from the exclusive loss of a single neutral water molecule to the exclusive loss of a small protonated water cluster via a charge-separation process. This transition occurs over a narrow range of cluster sizes that differs by only a few water molecules for each metal ion. The effective turnover size at which these two dissociation rates become equal depends on metal ion identity and is poorly correlated with the third ionization energies of the isolated metals but is well correlated with the hydrolysis constants of the trivalent metal ions in bulk aqueous solution. Infrared action spectra of these ions at cluster sizes near the turnover size are largely independent of the specific identity of the trivalent metal ion, suggesting that any differences in the structures of the ions present in our experiment are subtle.  相似文献   

18.
Spectra of clusters formed between lithium atoms and methylamine molecules are reported for the first time. Mass-selective infrared spectra of Li(NH(2)CH(3))(n) have been recorded in both the N-H and C-H stretching fundamental regions. The infrared spectra are broadly in agreement with ab initio predictions, showing redshifted N-H stretching bands relative to free methylamine and a strong enhancement of the N-H stretching fundamentals relative to the C-H stretching fundamentals. The ab initio calculations suggest that, for n=3, the methylamine molecules bunch together on one side of the lithium atom to minimize repulsive interactions with the unpaired electron density. The addition of a fourth methylamine molecule results in closure of the inner solvation shell and, thus, Li(NH(2)CH(3))(5) is forced to adopt a two-shell coordination structure. This is consistent with neutron diffraction studies of concentrated lithium/methylamine solutions, which also suggest that the first solvation shell around the lithium atom can contain a maximum of four methylamine molecules.  相似文献   

19.
Vibrational spectroscopy of size-selected formamide-water clusters, FA-(H2O)n , n = 1-4, prepared in a supersonic jet is performed with vacuum-ultraviolet-ionization detected-infrared predissociation spectroscopy (VUV-ID-IRPDS). The cluster structures are determined through comparisons of the observed IR spectra with theoretical calculations at the MP2/6-31++G** level. The FA-(H2O)n , n = 1-3, clusters have ring-type structures, where water molecules act as both single donor and single acceptor in the hydrogen-bond network between the amino and carbonyl groups of FA. For FA-(H2O)4, on the other hand, the absence of the free NH stretching vibration indicates formation of a double ring type structure, where two NH bonds of the amino group and the carbonyl oxygen of FA form hydrogen bonds with water molecules. An infrared spectrum of the formamide-water cluster cation, [FA-H2O](+), is also observed with infrared predissociation spectroscopy of vacuum-ultraviolet-pumped ion (IRPDS-VUV-PI). No band is observed for the free OH stretches of neutral water. This shows [FA-H2O](+) has such a structure that one of the hydrogen atoms of the water moiety is transferred to the carbonyl oxygen of FA(+).  相似文献   

20.
Excitation and decay processes of neutral and ionized ArN clusters are analysed using fluorescence spectroscopy with synchrotron radiation. The fluorescence yield of ionized ArN clusters is resonantly enhanced after excitation from states related to the atomic 3s levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号