首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visible absorption spectra of cesium-doped helium nanodroplets between 14,500 and 17,600 cm(-1) were probed by laser-induced fluorescence. A strong absorption band peaking around 16,700 cm(-1) is identified as Cs2 1(a) 3Sigmau+-3 3Sigmag+ transition. A broad unstructured band near 17,520 cm(-1) is assigned as the Cs2 1(X) 1Sigmag+-2 1Sigmau+ transition. Explanations of the observations are discussed on the basis of ab initio potential curves calculated by Spies and Meyer [(unpublished)]. All spectra have been modeled using narrow Frank-Condon windows around the equilibrium internuclear distance of the lowest singlet and triplet states. Many observed absorption peaks of smaller intensities could be identified, some of which may be due to transitions of cesium trimers formed on the droplets.  相似文献   

2.
We report the electronic polarization spectroscopy of two metal phthalocyanine chloride compounds (MPcCl, M=Al,Ga) embedded in superfluid helium droplets and oriented in a dc electric field. For both compounds, the laser induced fluorescence spectra show preference for perpendicular excitation relative to the orientation field. This result indicates that the permanent dipoles of both compounds are predominantly perpendicular to the transition dipole. Since the permanent dipole derives from the metal chloride, while the transition dipole derives from the phthalocyanine chromophore, in the plane of phthalocyanine, this qualitative result is not surprising. However, quantitative modeling reveals that this intuitive model is inadequate and that the transition dipole might have tilted away from the molecular plane of phthalocyanine. The out of plane component of the transition dipole amounts to approximately 10% if the permanent dipole is assumed to be approximately 4 debye. The origin for this tilt is puzzling, and we tentatively attribute it to the transition of nonbonding orbitals, either from the chlorine atom or from the bridge nitrogen atom, to the pi* orbitals of the phthalocyanine chromophore. On the other hand, although unlikely, we cannot completely exclude the possibility that both our high level density functional theory calculation and ab initio results severely deviate from reality. The droplet matrix induces redshifts in the origin of the electronic transition and produces discrete phonon wings. Nevertheless, in dc electric fields, all phonon wings and the zero phonon line demonstrate the same dependence on the polarization direction of the excitation laser. Although electronic excitation does couple to the superfluid helium matrix and the resulting phonon wings add complications to the electronic spectrum, this coupling does not affect the direction of the electronic transition dipole. Electronic polarization spectroscopy in superfluid helium droplets is thus still informative in revealing the permanent dipole and its relation relative to the transition dipole.  相似文献   

3.
We report electronic polarization spectroscopy of tryptamine embedded in superfluid helium droplets. In a dc electric field, dependence of laser induced fluorescence from tryptamine on the polarization direction of the excitation laser is measured. Among the three observed major conformers A, D, and E, conformers D and E display preference for perpendicular excitation relative to the orientation field, while conformer A is insensitive to the polarization direction of the excitation laser. We attribute the behavior of conformer A to the fact that the angle between the permanent dipole and the transition dipole is close to the magic angle. Using a linear variation method, we can reproduce the polarization preference of the three conformers and determine the angle between the transition dipole and the permanent dipole. Since the side chain exerts small effect on the direction of the transition dipole in the frame of the indole chromophore, all three conformers have a common transition dipole more or less in the indole plane at an angle of approximately 60 degrees relative to the long axis of the chromophore. The orientation of the side chain, on the other hand, determines the size and direction of the permanent dipole, thereby affecting the angle between the permanent dipole and the transition dipole. For conformer D in the droplet, our results agree with the Anti(ph) structure, rather than the Anti(py) structure. Our work demonstrates that polarization spectroscopy is effective in conformational identification for molecules that contain a known chromophore. Although coupling of the electronic transition with the helium matrix is not negligible, it does not affect the direction of the transition dipole.  相似文献   

4.
Experimental and theoretical investigations of the spectroscopy of molecules in superfluid helium droplets provide evidence for the key role of the first helium layer surrounding the dopant molecule in determining the molecule's spectroscopic features. Recent investigations of emission spectra of phthalocyanine in helium droplets revealed a doubling of all transitions. Herein, we present the emission spectra of Mg-phthalocyanine and of phthalocyanine-argon clusters in helium droplets, which confirm the splitting as a general effect of the helium environment. A scheme of levels is deduced from the emission spectra and attributed to quantized states of the first helium layer surrounding the dopant molecule.  相似文献   

5.
We have measured quantum states of the solvent-solute system of phthalocyanine in superfluid helium droplets in a high resolution pump-probe experiment. This provides evidence for the attribution of a splitting effect in the emission spectra of phthalocyanine in helium droplets to the relaxation of the first helium layer upon electronic excitation, measured recently by us. Our experimental results are a strong indication for the first helium layer playing a key roll for the solvation of molecules in helium droplets and, thus, for their spectroscopic features.  相似文献   

6.
High-resolution infrared spectroscopy has been used to determine the structures, C-H stretching frequencies, and dipole moments of the HCN-Agn (n = 1-3) complexes formed in superfluid helium droplets. The HCN-Ag4 cluster was tentatively assigned based upon pick-up cell pressure dependencies and harmonic vibrational shift calculations. Ab initio and density functional theory calculations were used in conjunction with the high-resolution spectra to analyze the bonding nature of each cluster. All monoligated species reported here are bound through the nitrogen end of the HCN molecule. The HCN-Agn complexes are structurally similar to the previously reported HCN-Cun clusters, with the exception of the HCN-Ag binary complex. Although the interaction between the HCN and the Agn clusters follows the same trends as the HCN-Cun clusters, the more diffuse nature of the electrons surrounding the silver atoms results in a much weaker interaction.  相似文献   

7.
The spectroscopy of molecules doped into superfluid helium nanodroplets provides valuable information on the process of solvation in superfluid helium. In continuation of an earlier report on emission spectra of various phthalocyanines showing a splitting of all molecular transitions in the range of about 5-12 cm(-1), the emission spectra of tetracene, pentacene, and perylene in superfluid helium droplets are presented. The new spectra and the results obtained for the phthalocyanines are explained by an empirical model which accounts for the existence of different metastable configurations of a nonsuperfluid solvation layer around the guest molecule.  相似文献   

8.
We report the infrared depletion spectrum of para- and ortho-hydrogen peroxide embedded in superfluid helium nanodroplets in the OH stretching region. Six transitions were observed in the antisymmetric stretching band (v(5)) of H(2)O(2), and three in the weaker symmetric stretching band (v(1)). While rotations about the b- and c-axes are slowed by a factor of ~0.4 relative to the gas phase, rotations about the a-axis are not significantly affected; this relates to the rotational speed about the a-axis being too fast for helium density to adiabatically follow. The trans tunneling splitting does not appear to be considerably affected by the helium droplet environment, and is reduced by only 6% relative to the gas phase, under the assumption that the vibrational shifts of the v(5) and v(1) torsional subbands are the same. The linewidths increase with increasing rotorsional energies, and are significantly narrower for energies which fall within the "phonon gap" of superfluid helium. These narrower lines are asymmetrically broadened, indicative of a dynamical coupling between the H(2)O(2) rotor and surrounding helium density.  相似文献   

9.
In a series of experiments devoted to the study of polycyclic aromatic hydrocarbons for astrophysical applications, the S(2)<--S(0) transition of jet-cooled pyrene (C(16)H(10)) at 321 nm has been studied by an absorption technique for the first time. The spectra observed by cavity ring-down spectroscopy closely resemble the excitation spectra obtained earlier by laser-induced fluorescence (LIF) and show the same band clusters arising from the vibronic interaction of S(2) with S(1). We have also investigated pyrene when it was incorporated into 380 mK cold helium droplets. These spectra which were recorded employing LIF and molecular beam depletion spectroscopy are broadened and redshifted by 0.94 nm but retain the essential features of the gas phase spectra.  相似文献   

10.
Rotationally resolved infrared spectra are reported for the X-HCN (X = Cl, Br, I) binary complexes solvated in helium nanodroplets. These results are directly compared with those obtained previously for the corresponding X-HF complexes [J. M. Merritt, J. Küpper and R. E. Miller, Phys. Chem. Chem. Phys., 2005, 7, 67]. For bromine and iodine atoms complexed with HCN, two linear structures are observed and assigned to the (2)Sigma(1/2) and (2)Pi(3/2) ground electronic states of the nitrogen and hydrogen bound geometries, respectively. Experiments for HCN + chlorine atoms give rise to only a single band which is attributed to the nitrogen bound isomer. That the hydrogen bound isomer is not stabilized is rationalized in terms of a lowering of the isomerization barrier by spin-orbit coupling. Theoretical calculations with and without spin-orbit coupling have also been performed and are compared with our experimental results. The possibility of stabilizing high-energy structures containing multiple radicals is discussed, motivated by preliminary spectroscopic evidence for the di-radical Br-HCCCN-Br complex. Spectra for the corresponding molecular halogen HCN-X(2) complexes are also presented.  相似文献   

11.
Within the diffusion Monte Carlo approach, we have determined the structure of isotopically pure and mixed helium droplets doped with one magnesium atom. For pure (4)He clusters, our results confirm those of Mella et al. [J. Chem. Phys. 123, 054328 (2005)] that the impurity experiences a transition from a surface to a bulk location as the number of helium atoms in the droplet increases. Contrarily, for pure (3)He clusters Mg resides in the bulk of the droplet due to the smaller surface tension of this isotope. Results for mixed droplets are presented. We have also obtained the absorption spectrum of Mg around the 3s3p?(1)P(1) ← 3s(2)?(1)S(0) transition.  相似文献   

12.
Electron impact ionization of helium nano-droplets containing several 104 He atoms and doped with CCl4 or SF6 molecules is studied with high-mass resolution. The mass spectra show significant clustering of CCl4 molecules, less so for SF6 under our experimental conditions. Positive ion efficiency curves as a function of electron energy indicate complete immersion of the molecules inside the helium droplets in both cases. For CCl4 we observe the molecular parent cation CCl4+ that preferentially is formed via Penning ionization upon collisions with He*. In contrast, no parent cation SF6+ is seen for He droplets doped with SF6. The fragmentation patterns for both molecules embedded in He are compared with gas phase studies. Ionization via electron transfer to He+ forms highly excited ions that cannot be stabilized by the surrounding He droplet. Besides the atomic fragments F+ and Cl+ several molecular fragment cations are observed with He atoms attached.  相似文献   

13.
Electronic spectra of molecules doped into superfluid (4)He nanodroplets reveal important details of the microsolvation in superfluid helium. The vibrational fine structure in the electronic spectra of phthalocyanine derivatives and pyrromethene dye molecules doped into superfluid helium droplets have been investigated. Together with previous studies on anthracene derivatives [J. Chem. Phys.2010, 133, 114505] and 3-hydroxyflavone [J. Chem. Phys.2009, 131, 194307], the line shapes vary between two limiting cases, namely, sharp Lorentzians and nonresolved vibrational fine structure. All different spectral signatures are initiated by the same effect, namely, the change of the electron density distribution initiated by the electronic excitation. This change can be quantified by the difference of the electrostatic moments of the molecule in the electronic ground state and the corresponding Franck-Condon point in the excited state. According to the experimental data, electronic spectroscopy suffers from drastic line broadening when accompanied by significant changes of the charge distribution, in particular, changes of the dipole moment. Vice versa, the vibrational fine structure in electronic spectra of molecules doped into helium droplets is highly sensitive to changes of the electron density distribution.  相似文献   

14.
The photoionization and photoelectron spectroscopy of pure He droplets were investigated at photon energies between 24.6 eV (the ionization energy of He) and 28.0 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, where there is significant production of clusters with more than 10(4) atoms, the photoelectron images are dominated by fast electrons produced via direct ionization, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons from the droplets have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a "dimer model", in which one assumes vertical ionization from two nearest-neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanisms for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.  相似文献   

15.
The rotationally resolved depletion spectrum of hypochlorous acid embedded in helium nanodroplets in the 2.8 μm region is reported. The narrow a-type lines are asymmetrically skewed in the direction of the band origin, and an analysis of their line shapes based on the chirped damped oscillator function introduced by van Staveren and Apkarian [J. Chem. Phys. 133, 054506 (2010).] yields a response time of the helium solvent of 1 ns. The b-type lines are much broader due to the greater number of droplet states available for relaxation of the excited rotational states.  相似文献   

16.
NIR spectroscopy has been applied to the study water in the interlayer of the autunite minerals. The spectra of autunites and metaautunites in the first HOH fundamental overtone are different and the spectra of autunites of different origins in the 6000-7500 cm(-1) region are considerably different. A number of conclusions are made based upon the NIR spectra: (a) The spectra of different autunites are different in the NIR spectral region; (b) the spectra of metaautunites show similarity; (c) the spectra of metaautunites are different from that of autunites. NIR spectroscopy provides a method of determination of the structure of water in the interlayer of natural autunites. The implication from the variation in the NIR spectra is that the structural arrangement of water for different autunites is different and is sample dependent. NIR spectroscopy has a wide potential for the study of the autunite minerals.  相似文献   

17.
Although near–infrared (NIR) spectroscopy has been used over many decades for the – primarily quantitative – analysis of polymers containing OH–, NH– and CH–functionalities (e.g. determination of OH–number, water content and residual carbon–carbon double–bonds), it has never been established as a wide–spread analytical and physical tool comparable to other spectroscopic techniques. In the late seventies, however, two new developments have initiated a renaissance of NIR spectroscopy in analytical chemistry. On the one hand, chemo–metric data evaluation techniques have – in combination with diffuse reflection measurements – opened up the possibility of non–destructive, rational multicomponent analysis and identity control of solid polymers with varying morphologies. On the other hand, the introduction of optical light fibres has contributed to an enormous expansion of conventional NIR spectroscopy in terms of remote control. Thus, specific fibre–optic probes allow a separation of the spectrometer and the location of sample measurement over several hundred meters and tremendously alleviate the analysis of toxic and hazardous materials including process and reaction control. Recently, further progress is made by the development of new, rapid-scan NIR monochromator systems without mechanically moved parts, such as acousto–optic tunable filters. Last, but not least, it should be mentioned, that – although not treated here – the new approach of Fourier–Transform Raman spectroscopy with Nd–YAG laser excitation at 1064 nm is principally also a near–infrared technique.  相似文献   

18.
Infrared laser spectroscopy has been used to characterize imidazole (IM), imidazole dimer (IMD), and imidazole-water (IMW) binary systems formed in helium nanodroplets. The experimental results are compared with ab initio calculations reported here. Vibrational transition moment angles provide conclusive assignments for the various complexes studied here, including IM, one isomer of IMD, and two isomers of the IMW binary complexes.  相似文献   

19.
Midinfrared spectra of HCl dimers have been obtained in helium nanodroplets. The interchange-tunneling (IT) splitting in the vibrationally excited state of the bonded H-Cl stretching band (nu(2)) in (H(35)Cl-H(37)Cl) dimers was measured to be 2.7+/-0.2 cm(-1), as compared to 3.7 cm(-1) in free dimer. From the splitting, the strength of the IT coupling in liquid helium of 0.85+/-0.15 cm(-1) was obtained, which is about a factor of 2 smaller than in the free dimer. The results are compared with the previous spectroscopic study of (HF)(2) in He droplets as well as the theoretical study of (HF)(2) and (HCl)(2) dimers in small He clusters.  相似文献   

20.
A suite of torbernites and metatorbernites have been analysed by near-infrared spectroscopy. The spectra of torbernites and metatorbernites in the first HOH fundamental overtone are different and the spectra of torbernites of different origins in the 6000-7500 cm(-1) region vary. NIR spectroscopy provides a method of studying the hydration of cations in the interlayer of torbernite. NIR spectroscopy shows that the spectra of torbernites from different origins in the water HOH first fundamental overtone and combination regions are different. This difference implies the hydration of cations is different for torbernite minerals. The structural arrangement of the water molecules in the interlayer is sample dependent. The NIR spectra of metatorbernites are different from that of torbernites and a similarity of the spectra of metatorbernites suggests that the water structure in metatorbernites is similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号