首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We report a three-dimensional ab initio potential-energy surface for the H2-Kr complex calculated using a supermolecular method. The electronic calculations were performed at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples levels with a large basis set including midbond functions and the full counterpoise correction for the basis-set superposition error. The intermolecular potential energy between the H2 molecule and the Kr atom were evaluated at five potential-optimized discrete variable representation (DVR) grid points generated from the potential-energy curve of H2. The potential for other bond lengths of H2 could be deduced using polynomial interpolations. The complex is found to have a linear preferred structure with a rather flat energy barrier. The three-dimensional DVR method and the Lanczos propagation algorithm were employed to calculate the rovibrational states without separating the inter- and intramolecular nuclear motions. In addition, the rovibrational spectra from the H2 fundamental vibrational band were calculated. The calculated shift for the band origin is -1.50 cm-1, which is in good agreement with the experimental value of -1.706 cm-1, and the calculated transition frequencies in Q1(0) and S1(0) bands are within 3% of the observed values.  相似文献   

2.
The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system.  相似文献   

3.
The potential energy surfaces of the van der Waals complexes benzene-Ar and p-difluorobenzene-Ar have been investigated at the second-order M?ller-Plesset (MP2) level of theory with the aug-cc-pVDZ basis set. Calculations were performed with unconstrained geometry optimization for all stationary points. This study has been performed to elucidate the nature of a conflict between experimental results from dispersed fluorescence and velocity map imaging (VMI). The inconsistency is that spectra for levels of p-difluorobenzene-Ar and -Kr below the dissociation thresholds determined by VMI show bands where free p-difluorobenzene emits, suggesting that dissociation is occurring. We proposed that the bands observed in the dispersed fluorescence spectra are due to emission from states in which the rare gas atom orbits the aromatic chromophore; these states are populated by intramolecular vibrational redistribution from the initially excited level [S. M. Bellm, R. J. Moulds, and W. D. Lawrance, J. Chem. Phys. 115, 10709 (2001)]. To test this proposition, stationary points have been located on both the benzene-Ar and p-difluorobenzene-Ar potential energy surfaces (PESs) to determine the barriers to this orbiting motion. Comparison with previous single point CCSD(T) calculations of the benzene-Ar PES has been used to determine the amount by which the barriers are overestimated at the MP2 level. As there is little difference in the comparable regions of the benzene-Ar and p-difluorobenzene-Ar PESs, the overestimation is expected to be similar for p-difluorobenzene-Ar. Allowing for this overestimation gives the barrier to movement of the Ar atom around the pDFB ring via the valley between the H atoms as < or = 204 cm(-1) in S0 (including zero point energy). From the estimated change upon electronic excitation, the corresponding barrier in S1 is estimated to be < or = 225 cm(-1). This barrier is less than the 240 cm(-1) energy of 30(2), the vibrational level for which the anomalous "free p-difluorobenzene" bands were observed in dispersed fluorescence from p-difluorobenzene-Ar, supporting our hypothesis for the origin of these bands.  相似文献   

4.
A full dimensional, ab initio-based semiglobal potential energy surface for C(2)H(3) (+) is reported. The ab initio electronic energies for this molecule are calculated using the spin-restricted, coupled cluster method restricted to single and double excitations with triples corrections [RCCSD(T)]. The RCCSD(T) method is used with the correlation-consistent polarized valence triple-zeta basis augmented with diffuse functions (aug-cc-pVTZ). The ab initio potential energy surface is represented by a many-body (cluster) expansion, each term of which uses functions that are fully invariant under permutations of like nuclei. The fitted potential energy surface is validated by comparing normal mode frequencies at the global minimum and secondary minimum with previous and new direct ab initio frequencies. The potential surface is used in vibrational analysis using the "single-reference" and "reaction-path" versions of the code MULTIMODE.  相似文献   

5.
We propose a method for fitting potential energy surfaces with a sum of component functions of lower dimensionality. This form facilitates quantum dynamics calculations. We show that it is possible to reduce the dimensionality of the component functions by introducing new and redundant coordinates obtained with linear transformations. The transformations are obtained from a neural network. Different coordinates are used for different component functions and the new coordinates are determined as the potential is fitted. The quality of the fits and the generality of the method are illustrated by fitting reference potential surfaces of hydrogen peroxide and of the reaction OH+H(2)-->H(2)O+H.  相似文献   

6.
The catalytically active tyrosyl radical which gives rise to the "wide doublet" (WD1) signal in ovine Prostaglandin H2 Synthase-1 has been studied using high frequency (HF) pulsed ENDOR and EPR. A hydrogen-bonded deuteron was directly detected in HFENDOR (130 GHz) spectra of 1H2O/2H2O-exchanged samples. The HFENDOR spectral simulations required a distribution in hydrogen bond distances to achieve proper fits. This range of distances was consistent with that used to model the distribution in gX values detected in pulsed HFEPR spectra. Possible hydrogen-bonding partners, as well as implications regarding the mechanism of self-inactivation for PGHS, are discussed.  相似文献   

7.
In MC SCF theory both the orbitals and the wavefunction expansion coefficients are optimized by minimizing the energy of the system with respect to arbitrary variations of the orbitals and the wavefunction expansion coefficients. This procedure leads to separate equations for the optimal orbitals and to the secular equation for the expansion coefficients which must be solved self-consistently. In a previous paper we discussed the properties of several different choices of localization potential which may be used in the orbital equation. In this paper we derive an alternative native secular equation by making use of the transformation properties of the localized orbitals. This secular equation is considerably simpler than the conventional secular equation and leads to a simplified scheme for the self-consistent solution of the orbital and secular equations.  相似文献   

8.
We present a full-dimensional potential energy surface and a dipole moment surface (DMS) for hydrated sodium ion. These surfaces are based on an n-body expansion for both the potential energy and the dipole moment, truncated at the two-body level for the H(2)O-Na(+) interaction and also for the DMS. The water-water interaction is truncated at the three-body level. The new full-dimensional two-body H(2)O-Na(+) potential is a fit to roughly 20,000 coupled-cluster single double (triple)/aug-cc-pVTZ energies. Properties of this two-body potential and the potential describing (H(2)O)(n)Na(+) clusters, with n up to 4 are given. We then report anharmonic, coupled vibrational calculations with the "local-monomer model" to obtain infrared spectra and also 0 K radial distribution functions for these clusters. Some comparisons are made with the recent infrared predissociation spectroscopy experiments of Miller and Lisy [J. Am. Chem. Soc. 130, 15381 (2008).].  相似文献   

9.
Shiell RC  Hu X  Hu QJ  Hepburn JW 《Faraday discussions》2000,(115):331-43; discussion
The threshold ion-pair production spectra at the J" = 0 and J" = 1 thresholds of H2 and J" = 0, 1 and 2 thresholds of D2 obtained with single photon excitation are presented. The ion-pair yield spectra of H2 and D2 over these energy ranges demonstrate strong resonant enhancement, parts of which dominate the TIPPS signals, permitting the assignment of the lower states of these resonances. From those thresholds with weak resonant enhancement (the J" = 0 threshold of H2 and the J" = 1 threshold of D2) a very small direct contribution to ion-pair production can be observed. The behaviour of the TIPPS spectra taken with different applied discrimination fields is understood by modeling the field ionization behaviour of a MATI spectrum of H2, containing both the similarly resonantly enhanced v+ = 8 S(0) ionization threshold and the non-resonantly enhanced S(1) ionization threshold. From the H2 J" = 1 and D2 J" = 0 TIPPS spectra the energetic field-free thresholds of the H2 and D2 ion-pair limits were determined to be 139,714.8 +/- 1.0 cm-1 and 140,370.2 cm-1 +/- 1.0 cm-1, respectively.  相似文献   

10.
Strong electron correlation plays an important role in the determination of double ionization energy, which is required for removing or adding two electrons, particularly in small-sized systems. Starting from the state-of-the-art GW approximation, we evaluate the particle-particle ladder diagrams up to the infinite order by solving the Bethe-Salpeter equation of the T-matrix theory to calculate the double-ionization energy spectra of atoms and molecules (Be, Mg, Ca, Ne, Ar, Kr, CO, C(2)H(2), Li(2), Na(2), and K(2)) from first principles. The ladder diagrams up to the infinite order are significant to calculations of double-ionization energy spectra. The present results are in good agreement with available experimental data as well as the previous calculations using, e.g., the configuration-interaction method.  相似文献   

11.
The classical interchange (permutation) of atoms of similar identity does not have an effect on the overall potential energy. In this study, we present feed-forward neural network structures that provide permutation symmetry to the potential energy surfaces of molecules. The new feed-forward neural network structures are employed to fit the potential energy surfaces for two illustrative molecules, which are H(2)O and ClOOCl. Modifications are made to describe the symmetric interchange (permutation) of atoms of similar identity (or mathematically, the permutation of symmetric input parameters). The combined-function-derivative approximation algorithm (J. Chem. Phys. 2009, 130, 134101) is also implemented to fit the neural-network potential energy surfaces accurately. The combination of our symmetric neural networks and the function-derivative fitting effectively produces PES fits using fewer numbers of training data points. For H(2)O, only 282 configurations are employed as the training set; the testing root-mean-squared and mean-absolute energy errors are respectively reported as 0.0103 eV (0.236 kcal/mol) and 0.0078 eV (0.179 kcal/mol). In the ClOOCl case, 1693 configurations are required to construct the training set; the root-mean-squared and mean-absolute energy errors for the ClOOCl testing set are 0.0409 eV (0.943 kcal/mol) and 0.0269 eV (0.620 kcal/mol), respectively. Overall, we find good agreements between ab initio and NN prediction in term of energy and gradient errors, and conclude that the new feed-forward neural-network models advantageously describe the molecules with excellent accuracy.  相似文献   

12.
Gaseous protonated aziridine ions are produced at the threshold from β-phenoxyethylamine molecular ions. The evidence for this is collisional activation spectra, using various precursors (including labelled analogues) under electron impact and field ionization conditions. Partial conversion to the acyclic \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = }\mathop {\rm N}\limits^ + {\rm H}_{\rm 2} $\end{document} isomer occurs at higher electron energies and is rationalized by means of a potential energy surface constructed from energetic data.  相似文献   

13.
We present global potential energy surfaces for the three lowest triplet states in O(3P)+H2O(X1A1) collisions and present results of classical dynamics calculations on the O(3P)+H2O(X1A1)-->OH(X2pi)+OH(X2pi) reaction using these surfaces. The surfaces are spline-based fits of approximately 20,000 fixed geometry ab initio calculations at the complete-active-space self-consistent field+second-order perturbation theory (CASSCF+MP2) level with a O(4s3p2d1f)/H(3s2p) one electron basis set. Computed rate constants compare well to measurements in the 1000-2500 K range using these surfaces. We also compute the total, rovibrationally resolved, and differential angular cross sections at fixed collision velocities from near threshold at approximately 4 km s(-1) (16.9 kcal mol(-1) collision energy) to 11 km s(-1) (122.5 kcal mol(-1) collision energy), and we compare these computed cross sections to available space-based and laboratory data. A major finding of the present work is that above approximately 40 kcal mol(-1) collision energy rovibrationally excited OH(X2pi) products are a significant and perhaps dominant contributor to the observed 1-5 micro spectral emission from O(3P)+H2O(X1A1) collisions. Another important result is that OH(X2pi) products are formed in two distinct rovibrational distributions. The "active" OH products are formed with the reagent O atom, and their rovibrational distributions are extremely hot. The remaining "spectator" OH is relatively rovibrationally cold. For the active OH, rotational energy is dominant at all collision velocities, but the opposite holds for the spectator OH. Summed over both OH products, below approximately 50 kcal mol(-1) collision energy, vibration dominates the OH internal energy, and above approximately 50 kcal mol(-1) rotation is greater than vibrational energy. As the collision energy increases, energy is diverted from vibration to mostly translational energy. We note that the present fitted surfaces can also be used to investigate direct collisional excitation of H2O(X1A1) by O(3P) and also OH(X2pi)+OH(X2pi) collisions.  相似文献   

14.
The kinetics of the reaction of H2O2 with excess SCN- in acidic media was studied by use of Ti(IV) as an indicator for the concentration of H2O2. Pseudo-first-order behavior was realized by this method, and these data confirm the acid-catalyzed rate law and rate constant reported some 40 years ago for this reaction under conditions of excess H2O2. Under the same conditions except without Ti(IV), repetitive-scan spectra reveal the formation and decay of an intermediate that absorbs in the UV. In the proposed mechanism, HOSCN is produced in the first step and it is converted rapidly to (SCN)2 through its equilibrium reaction with SCN-. The observed intermediate is believed to be (SCN)2, which decays on a longer time scale. Excellent global fits of this mechanism to the repetitive-scan data are obtained with rate constants constrained by the Ti(IV) data and published previously in our study of the ClO2/SCN- reaction. These fits yield a spectrum for (SCN)2 that is characterized by lambda(max) = 297 nm and epsilon297 = 147 M(-1) cm(-1), in fine agreement with our prior report.  相似文献   

15.
Evidence is presented that there is a clear covalent component in the bonding of Au+ to Kr and Au+ to Xe, with some evidence that there may be such bonding between Au+ and Ar; for Au+ and Ne, there is no such evidence, and the bonding seems to be entirely physical. A model potential analysis shows that when all attractive inductive and dispersive terms out to R-8 are properly included in the Au+-Ne case, with an Ae(-bR) Born-Mayer repulsive term, essentially all the bonding in Au+-Ne can be rationalized by physical attraction alone. This is consistent with a natural bond order (NBO) analysis of the Au+-Ne ab initio wavefunctions, which shows the charge on Au+ to be very close to 1.0. In contrast, similar model potential and NBO analyses show quite clearly that physical interactions alone cannot account for the large bond energy values for the Au+-Kr and Au+-Xe complexes and are consistent with covalent contributions to the Au+-Kr and Au+-Xe interactions. Au+-Ar is seen to lie on the borderline between these two limits. In performing the model potential analyses, high-level ab initio calculations are employed [CCSD(T) energies, extrapolated to the complete basis set limit], to obtain reliable values of Re, De and omegae as input. A comparison of the gold-Xe bond distances in several solid-state Au(I, II and III) oxidation-state complex ions, containing "ligand" Xe atoms, prepared by Seppelt and co-workers, with that of the "free" Au+-Xe gas-phase ion is made, and a discussion of the trends is presented.  相似文献   

16.
State-to-state photodissociation dynamics of H(2)O in its B band has been investigated quantum mechanically on a new set of non-adiabatically coupled potential energy surfaces for the lowest two (1)A' states of H(2)O, which are developed at the internally contracted multi-reference configuration interaction level with the aug-cc-pVQZ basis set. Quantum dynamical calculations carried out using the Chebyshev propagator yield absorption spectra, product state distributions, branching ratios, and differential cross sections, which are in reasonably good agreement with the latest experimental results. Particular focus is placed here on the dependence of various dynamical observables on the photon energy. Detailed analyses of the dynamics have assigned the diffuse structure in absorption spectrum to short-time recurring dynamics near the HOH conical intersection. The non-adiabatic dissociation to the ground state OH product via the HOH conical intersection is facile, direct, fast, and produces rotationally hot OH(X?) products. On the other hand, the adiabatic channel on the excited state leading to the OH(A?) product is dominated by long-lived resonances, which depend sensitively on the potential energy surfaces.  相似文献   

17.
We show that the divergent integrals which appear in a direct matrix solution to the Siegert problem for autoionizing (or electron scattering) state energies and widths can be cancelled exactly. When this is done the Siegert problem becomes essentially a bound state problem. We also show that the resulting non-hermitian secular equation which requires several non-hermitian diagonalizations in the iterative solution for the complex energy can be exactly reduced by a partitioning technique to a single hermitian diagonalization (for a single open channel) with the subsequent iterative solution of a simple algebraic equation.  相似文献   

18.
The adiabatic potential energy surfaces for the lowest five electronic states of (3)A" symmetry for the H(+)+O(2) collision system have been obtained at the multireference configuration interaction level of accuracy using Dunning's correlation consistent polarized valence triple zeta basis set. The radial nonadiabatic coupling terms and the mixing angle between the lowest two electronic states (1 (3)A" and 2 (3)A"), which adiabatically correlate in the asymptotic limit to H((2)S)+O(2) (+)(X (2)Pi(g)) and H(+)+O(2)(X (3)Sigma(g)(-)), respectively, have been computed using ab initio procedures at the same level of accuracy to yield the corresponding quasidiabatic potential energy matrix. The computed strengths of the vibrational coupling matrix elements reflect the trend observed for inelastic vibrational excitations of O(2) in the experiments at collision energy of 9.5 eV. The quantum dynamics has been preformed on the newly obtained coupled quasidiabatic potential energy surfaces under the vibrational close-coupling rotational infinite-order sudden framework at the experimental collision energy of 9.5 eV. The present theoretical results for vibrational elastic/inelastic excitations of O(2) are in overall good agreement with the available experimental data obtained from the proton energy-loss spectra in molecular beam experiments [F. A. Gianturco et al., J. Phys. B 14, 667 (1981)]. The results for the complementary charge transfer processes are also presented at this collision energy.  相似文献   

19.
We report a new method for mapping patterned surfaces based on monitoring the interactions of freely diffusing colloidal probes with pattern features to generate measured potential energy landscapes. Evanescent wave scattering and video microscopy are used to track 3D center positions of nominal 2 microm silica colloids as they diffuse over 5-20-nm-thick patterned gold films. An analysis of ensemble-averaged particle height histograms on different pattern features using Boltzmann's equation produces local electrostatic and van der Waals potentials in good agreement with independent measurements and predictions. Absolute separation is obtained from theoretical fits to measured potential-energy profiles and direct measurement by depositing silica colloids onto gold surfaces via electrophoretic deposition. As colloidal probe and pattern feature dimensions become comparable, potential energy profiles suffer some distortion due to the increased probability of probes sampling pattern feature edges. An analysis of interfacial colloidal probe diffusion in conjunction with potential energy measurements demonstrates a consistent interpretation of dissipative and conservative forces in these measurements. Future extensions of this work should produce similar approaches for interrogating physical, chemical, and biomolecular heterogeneous/patterned surfaces and structures with diffusing colloidal probes.  相似文献   

20.
自70年代起,Handy[1]等,用变分法计算了H2、SO2等分子的振动-转动光谱,所得结果与实验吻合。但因在于计算久期行列式元素的积分,其计算方法不易推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号