首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Mendeleev Communications》2021,31(6):781-783
The CO- and H2-assisted reductive amination of carbonyl compounds catalyzed by stable chiral Hayashi ligand-based rhodium complex afforded the racemic amines in moderate yields. The racemic outcome of the process results from the elimination of the chiral ligand from the catalyst under the action of hydrogen or carbon monoxide as reductants.  相似文献   

2.
Time-resolved infrared (TRIR) flash photolytic techniques have been employed to initiate and observe the efficient dissociation of CO from a synthetic heme-CO/copper complex, [((6)L)Fe(II)(CO)..Cu(I)](+) (2), in CH(3)CN and acetone at room temperature. In CH(3)CN, a significant fraction of the photodissociated CO molecules transiently bind to copper (nu(CO)(Cu) = 2091 cm(-)(1)) giving [((6)L)Fe(II)..Cu(I)(CO)](+) (4), with an observed rate constant, k(1) = 1.5 x 10(5) s(-)(1). That is followed by a slower direct transfer of CO from the copper moiety back to the heme (nu(CO)(Fe) = 1975 cm(-)(1)) with k(2) = 1600 s(-)(1). Additional transient absorption (TA) UV-vis spectroscopic experiments have been performed monitoring the CO-transfer reaction by following the Soret band. Eyring analysis of the temperature-dependent data yields DeltaH(double dagger) = 43.9 kJ mol(-)(1) for the 4-to-2 transformation, similar to that for CO dissociation from [Cu(I)(tmpa)(CO)](+) in CH(3)CN (DeltaH(double dagger) = 43.6 kJ mol(-)(1)), suggesting CO dissociation from copper regulates the binding of small molecules to the heme within [((6)L)Fe(II)..Cu(I)](+)(3). Our observations are analagous to those observed for the heme(a3)/Cu(B) active site of cytochrome c oxidase, where photodissociated CO from the heme(a3) site immediately (ps) transfers to Cu(B) followed by millisecond transfer back to the heme.  相似文献   

3.
A recently introduced computational algorithm to extend time scales of atomically detailed simulations is illustrated. The algorithm, milestoning, is based on partitioning the dynamics to a sequence of trajectories between "milestones" and constructing a non-Markovian model for the motion along a reaction coordinate. The kinetics of a conformational transition in a blocked alanine is computed and shown to be accurate, more efficient than straightforward molecular dynamics by a factor of about 9, and nonexponential. A general scaling argument predicts a linear speedup with the number of milestones for diffusive processes and an exponential speedup for transitions over barriers. The algorithm is also trivial to parallelize. As a side result, milestoning also produces the free energy profile along the reaction coordinate and is able to describe nonequilibrium motions along one (or a few) degrees of freedom.  相似文献   

4.
This paper presents a quantum-mechanical study of the intramolecular excitation energy transfer (EET) coupling in naphthalene-bridge-naphthalene systems in gas phase and in solution. ZINDO and TDDFT response schemes are compared using both an exact and an approximate solution. The approximate solution based on a perturbative approach uses the single chromophore properties to reconstruct the real system coupling thus neglecting possible through-bond effects which conversely are accounted for in the exact solution. The comparison of the results of the two approaches with the experiments allows a detailed analysis of the relative importance of through-bond and through-space effects as well as a more complete understanding of the modifications in the EET coupling with the size of the system, the chromophore-chromophore distance, and solvation.  相似文献   

5.
The fluctuating elastic boundary (FEB) model for molecular dynamics has recently been developed and validated through simulations of liquid argon. In the FEB model, a flexible boundary which consists of particles connected by springs is used to confine the solvated system, thereby eliminating the need for periodic boundary conditions. In this study, we extend this model to the simulation of bulk water and solvated alanine dipeptide. Both the confining potential and boundary particle interaction functions are modified to preserve the structural integrity of the boundary and prevent the leakage of the solute-solvent system through the boundary. A broad spectrum of structural and dynamic properties of liquid water are computed and compared with those obtained from conventional periodic boundary condition simulations. The applicability of the model to biomolecular simulations is investigated through the analysis of conformational population distribution of solvated alanine dipeptide. In most cases we find remarkable agreement between the two simulation approaches.  相似文献   

6.
7.
Quantum chemical calculations were carried out to study the reaction of carbon monoxide with molecular oxygen in the ground triplet and singlet delta states. Transition states and intermediates that connect the reactants with products of the reaction on the triplet and singlet potential energy surfaces were identified on the base of coupled-cluster method. The values of energy barriers were refined by using compound techniques such as CBS-Q, CBS-QB3, and G3. The calculations showed that there exists an intersection of triplet and singlet potential energy surfaces. This fact leads to the appearance of two channels for the triplet CO+O(2)(X(3)Σ(g)(-)) reaction, which produces atomic oxygen in the ground O((3)P) and excited O((1)D) states. The appropriate rate constants of all reaction paths were estimated on the base of nonvariational transition-state theory. It was found that the singlet reaction rate constant is much greater than the triplet one and that the reaction channel CO+O(2)(a(1)Δ(g)) should be taken into consideration to interpret the experimental data on the oxidation of CO by molecular oxygen.  相似文献   

8.
The cationic hydridoaquopalladium (II) complex, trans-[(PCy3)2Pd(H)(H2O)]+BF?4, is an excellent catalyst for the ethylene/carbon monoxide alternating copolymerization in the presence of a bidentate phosphorus ligand and p-toluenesulphonic acid. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
We have studied chemisorption on niobium clusters based on the local spin density approximation in a scheme which uses pseudopotentials and a plane wave expansion of the electronic wave functions. Results are presented for geometries and the electronic structure of Nb4 and Nb8, and compared with experimental data of ionization potentials. Key issues concerning atomic and molecular adsorption on metal clusters are the nature of the binding, the preferred configurations, and the changes induced on the cluster properties. We have examined these questions in the case of carbon monoxide and oxygen. For carbon monoxide, we calculate a significant reduction of the stretch vibration frequency and, in the case of oxygen, shifts of the ionization potentials were obtained. Our results for oxygen are in agreement with experimental data, indicating only a minor shift of the ionization potential due to oxidation, also as a function of coverage.  相似文献   

10.
Motivated by recent ultrafast spectroscopic experiments [Martini et al., Science 293, 462 (2001)], which suggest that photoexcited solvated electrons in tetrahydrofuran (THF) can relocalize (that is, return to equilibrium in solvent cavities far from where they started), we performed a series of nonequilibrium, nonadiabatic, mixed quantum/classical molecular dynamics simulations that mimic one-photon excitation of the THF-solvated electron. We find that as photoexcited THF-solvated electrons relax to their ground states either by continuous mixing from the excited state or via nonadiabatic transitions, approximately 30% of them relocalize into cavities that can be over 1 nm away from where they originated, in close agreement with the experiments. A detailed investigation shows that the ability of excited THF-solvated electrons to undergo photoinduced relocalization stems from the existence of preexisting cavity traps that are an intrinsic part of the structure of liquid THF. This explains why solvated electrons can undergo photoinduced relocalization in solvents like THF but not in solvents like water, which lack the preexisting traps necessary to stabilize the excited electron in other places in the fluid. We also find that even when they do not ultimately relocalize, photoexcited solvated electrons in THF temporarily visit other sites in the fluid, explaining why the photoexcitation of THF-solvated electrons is so efficient at promoting recombination with nearby scavengers. Overall, our study shows that the defining characteristic of a liquid that permits the photoassisted relocalization of solvated electrons is the existence of nascent cavities that are attractive to an excess electron; we propose that other such liquids can be found from classical computer simulations or neutron diffraction experiments.  相似文献   

11.
This review describes the saga of the atom and molecules, from the atomic concept as it was introduced 25 centuries ago by Leucippus and Democritus, to the modern Quantum Molecular Modeling. Quantum methods that have given rise to the contemporary Molecular Modeling are briefly presented. Chosen examples illustrate the performance and the predictions of Quantum Modeling in the following topics: conformational analysis, electrostatics, molecular spins and radicals, infrared and Raman spectra, thermochemistry, and electrophilicity properties derived from the molecular chemical potential.  相似文献   

12.
A new approach is developed to study the dynamics of the localized process in solutions and other condensed phase systems. The approach employs a fluctuating elastic boundary (FEB) model which encloses the simulated system in an elastic bag that mimics the effects of the bulk solvent. This alleviates the need for periodic boundary conditions and allows for a reduction in the number of solvent molecules that need to be included in the simulation. The boundary bag is modeled as a mesh of quasi-particles connected by elastic bonds. The FEB model allows for volume and density fluctuations characteristic of the bulk system, and the shape of the boundary fluctuates during the course of the simulation to adapt to the configuration fluctuations of the explicit solute-solvent system inside. The method is applied to the simulation of a Lennard-Jones model of liquid argon. Various structural and dynamical quantities are computed and compared with those obtained from conventional periodic boundary simulations. The agreement between the two is excellent in most cases, thus validating the viability of the FEB method.  相似文献   

13.
Rotational dynamics of solvated carbon dioxide (CO(2)) has been studied. The infrared absorption band of the antisymmetric stretch mode in acetonitrile is found to show a non-Lorentzian band shape, suggesting a non-exponential decay of the vibrational and/or rotational correlation functions. A combined method of a molecular dynamics (MD) simulation and a quantum chemical calculation well reproduces the observed band shape. The analysis suggests that the band broadening is almost purely rotational, while the contribution from the vibrational dephasing is negligibly small. The non-exponential rotational correlation decay can be explained by a simple rotor model simulation, which can treat large angle rotations of a relatively small molecule. A polarized Raman study of the symmetric stretch mode in acetonitrile gives a rotational bandwidth consistent with that obtained from the infrared analysis. A sub-picosecond time-resolved infrared absorption anisotropy measurement of the antisymmetric stretch mode in ethanol also gives a decay rate that is consistent with the observed rotational bandwidths.  相似文献   

14.
In this work, the GLOB model, an effective and reliable computational approach well suited for ab initio and QM/MM molecular dynamics simulations of complex molecular systems in solution, has been applied to study two representative open-shell systems, the cobalt(II) ion and the glycine radical in aqueous solution, with special reference to their structural and magnetic properties. The main structural features of the solvent cage around the cobalt ion and the hydrogen bonding patterns around the neutral and zwitterionic forms of the glycine radical have been investigated in some detail. The general good agreement with experiments supports the use of the present model to investigate more challenging and biological/technological relevant open-shell systems.  相似文献   

15.
Phosphinoborane ligands impart unique reactivity to a rhenium carbonyl cation relative to simple phosphine complexes. Addition of either triethylborohydride or a platinum hydride (that can be formed from H2) forms a rhenium boroxycarbene. This carbene, which crystallizes as a dimer, disproportionates over a period of days to afford the starting cation and a structurally unprecedented boroxy(boroxymethyl)carbene, in which a new C-C bond has been formed between two reduced CO ligands. This product of C-C bond formation can be independently synthesized by addition of 2 equiv of hydride to the rhenium carbonyl cation.  相似文献   

16.
Phytochlorin [21H, 23H-Porphine-7-propanoicacid, 3-carboxy-5-(carboxymethyl)13-ethenyl-18-ethyl-7,8-dihydro-2,8,12,17-tetramethyl-,(7S,8S)] was labeled with 99mTc and the factors affecting the labeling yield of 99mTc-phytochlorin complex were studied in details. At pH 10, 99mTc-phytochlorin complex was obtained with a high radiochemical yield of 98.4 ± 0.6 % by adding 99mTc to 100 mg phytochlorin in the presence of 75 μg SnCl2·2H2O after 30 min reaction time. The molecular modeling study showed that the structure of 99mTc-phytochlorin complex presents nearly linear HO–Tc–OH unit with an angle of 179.27° and a coplanar Tc(N1N2N3N4) unit. Biodistribution of 99mTc-phytochlorin complex in tumor bearing mice showed high T/NT ratio (T/NT = 3.65 at 90 min post injection). This preclinical study showed that 99mTc-phytochlorin complex is a potential selective radiotracer for solid tumor imaging and afford it as a new radiopharmaceutical suitable to proceed through the clinical trials for tumor imaging.  相似文献   

17.
The catalytic activity of low-percentage Co,Pd systems on ZSM-5, ERI, SiO2, and Al2O3 supports in the oxidation of CO was studied. The activity of bimetal-containing catalysts was shown to depend on the nature of the catalyst and the amount and ratio of their active components. According to the results of thermoprogrammed reduction with H2 (H2 TPR) and X-ray photoelectron spectroscopy (XPS) data, the metals are distributed as isolated cations or Coδ+-O-Pdδ+ clusters with cobalt and palladium cations surrounded by off-lattice oxygen in Co,Pd systems. The 0.8% Co,0.5% Pd-ZSM-5 bimetal catalysts were found to be more active due to the presence of clusters.  相似文献   

18.
Conclusions The -allylidene complex is formed in the photochemical reaction of with 1,3-butadiene and 1,3-cyclohexadiene, with subsequent replacement of the carbonyl group by the appropriate ligand.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2130–2131, September, 1977.  相似文献   

19.
Molecular simulation studies of the microstructure and of the proton transport properties of phosphoric acid solvated Nafion membrane are carried out. The ab initio calculations show that the phosphoric acid is a good solvent to promote the proton ionization of the sulfonic acid group, and only two phosphoric acid molecules are necessary for the dissociation of one sulfonic acid group. A mechanism of proton hopping between phosphoric acid and protonated phosphoric acid cation in the hydrophilic subphase is also elucidated by ab initio calculations. The molecular dynamics simulations, conducted at a phosphoric acid concentration of 25.4% (wt) which is slightly lower than that of phosphoric acid swollen Nafion, show that the phosphoric acid exists in subphases and that it cannot develop into a continuous subphase. Thus, proton-hopping pathways are interrupted, and the conductivity is expected to be lower than that for pure phosphoric acid. The molecular dynamics simulations, conducted at a phosphoric acid concentration of 45.1% (wt) which corresponds to an unstable state, show that the hydrophobic poly(tetrafluoroethylene) backbones trend to gather together forming hydrophobic clusters and that the phosphoric acid forms a continuous subphase with the sulfonic acid groups located at the hydrophobic/hydrophilic interface. Thus, proton-hopping pathways can develop uninterruptedly like the pure phosphoric acid, and high conductivity is expected. The molecular dynamics study also shows that the hydrogen-bonding characteristics of phosphoric acid and sulfonate anion are similar regardless of the factor that the former can move freely while the latter is attached to Nafion backbone.  相似文献   

20.
The rotational dynamics of CO single molecules solvated in small He clusters (CO @ HeN) has been studied using reptation quantum Monte Carlo simulations for cluster sizes up to N = 30. Our results are in good agreement with the rotovibrational features of the infrared spectrum recently determined for this system and provide a deep insight into the relation between the structure of the cluster and its dynamics. Simulations for large N also provide a prediction of the effective moment of inertia of CO in the He nanodroplet regime, which has not been measured so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号