首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The absorption spectra of aminocoumarin C151 in water and n-hexane solution are investigated by an explicit quantum chemical solvent model. We improved the efficiency of the frozen-density embedding scheme, as used in a former study on solvatochromism (J. Chem. Phys. 2005, 122, 094115) to describe very large solvent shells. The computer time used in this new implementation scales approximately linearly (with a low prefactor) with the number of solvent molecules. We test the ability of the frozen-density embedding to describe specific solvent effects due to hydrogen bonding for a small example system, as well as the convergence of the excitation energy with the number of solvent molecules considered in the solvation shell. Calculations with up to 500 water molecules (1500 atoms) in the solvent system are carried out. The absorption spectra are studied for C151 in aqueous or n-hexane solution for direct comparison with experimental data. To obtain snapshots of the dye molecule in solution, for which subsequent excitation energies are calculated, we use a classical molecular dynamics (MD) simulation with a force field adapted to first-principles calculations. In the calculation of solvatochromic shifts between solvents of different polarity, the vertical excitation energy obtained at the equilibrium structure of the isolated chromophore is sometimes taken as a guess for the excitation energy in a nonpolar solvent. Our results show that this is, in general, not an appropriate assumption. This is mainly due to the fact that the solute dynamics is neglected. The experimental shift between n-hexane and water as solvents is qualitatively reproduced, even by the simplest embedding approximation, and the results can be improved by a partial polarization of the frozen density. It is shown that the shift is mainly due to the electronic effect of the water molecules, and the structural effects are similar in n-hexane and water. By including water molecules, which might be directly involved in the excitation, in the embedded region, an agreement with experimental values within 0.05 eV is achieved.  相似文献   

2.
For nine solvents of various polarity (from cyclohexane to water), the solvatochromic shifts of the lowest absorption band of coumarin 153 are evaluated using a computational method based on frozen-density embedding theory [Wesolowski and Warshel, J. Chem Phys., 1993, 97, 9050, and subsequent articles]. In the calculations, the average electron density of the solvent [linear span]ρ(B)(r[combining right harpoon above])[linear span] is used as the frozen density. [linear span]ρ(B)(r[combining right harpoon above])[linear span] is evaluated using the statistical-mechanical approach introduced in Kaminski et al., J. Phys. Chem. A, 2010, 114, 6082. The small deviations between experimental and calculated solvatochromic shifts (the average deviation equals to about 0.02 eV), confirm the adequacy of the key approximations applied: (a) in the evaluation of the average effect of the solvent on the excitation energy, using the average density of the solvent instead of averaging the shifts over statistical ensemble and (b) using the approximant for the bi-functional of the non-electrostatic component of the orbital-free embedding potential, are adequate for chromophores which interact with the environment by non-covalent bonds. The qualitative analyses of the origin of the solvatochromic shifts are made using the graphical representation of the orbital-free embedding potential.  相似文献   

3.
In this study, we investigate the performance of the frozen-density embedding scheme within density-functional theory [J. Phys. Chem. 97, 8050 (1993)] to model the solvent effects on the electron-spin-resonance hyperfine coupling constants (hfcc's) of the H2NO molecule. The hfcc's for this molecule depend critically on the out-of-plane bending angle of the NO bond from the molecular plane. Therefore, solvent effects can have an influence on both the electronic structure for a given configuration of solute and solvent molecules and on the probability for different solute (plus solvent) structures compared to the gas phase. For an accurate modeling of dynamic effects in solution, we employ the Car-Parrinello molecular-dynamics (CPMD) approach. A first-principles-based Monte Carlo scheme is used for the gas-phase simulation, in order to avoid problems in the thermal equilibration for this small molecule. Calculations of small H2NO-water clusters show that microsolvation effects of water molecules due to hydrogen bonding can be reproduced by frozen-density embedding calculations. Even simple sum-of-molecular-densities approaches for the frozen density lead to good results. This allows us to include also bulk solvent effects by performing frozen-density calculations with many explicit water molecules for snapshots from the CPMD simulation. The electronic effect of the solvent at a given structure is reproduced by the frozen-density embedding. Dynamic structural effects in solution are found to be similar to the gas phase. But the small differences in the average structures still induce significant changes in the computed shifts due to the strong dependence of the hyperfine coupling constants on the out-of-plane bending angle.  相似文献   

4.
We apply the long-range correction (LC) scheme for exchange functionals of density functional theory to time-dependent density functional theory (TDDFT) and examine its efficiency in dealing with the serious problems of TDDFT, i.e., the underestimations of Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies. By calculating vertical excitation energies of typical molecules, it was found that LC-TDDFT gives accurate excitation energies, within an error of 0.5 eV, and reasonable oscillator strengths, while TDDFT employing a pure functional provides 1.5 eV lower excitation energies and two orders of magnitude lower oscillator strengths for the Rydberg excitations. It was also found that LC-TDDFT clearly reproduces the correct asymptotic behavior of the charge-transfer excitation energy of ethylene-tetrafluoroethylene dimer for the long intramolecular distance, unlike a conventional far-nucleus asymptotic correction scheme. It is, therefore, presumed that poor TDDFT results for pure functionals may be due to their lack of a long-range orbital-orbital interaction.  相似文献   

5.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

6.
We have developed and implemented pseudospectral time‐dependent density‐functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm–Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time‐dependent density‐functional theory with full linear response (PS‐FLR‐TDDFT) and within the Tamm–Dancoff approximation (PS‐TDA‐TDDFT) for G2 set molecules using B3LYP/6‐31G** show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS‐FLR‐TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS‐FLR‐TDDFT and best estimations demonstrate that the accuracy of both PS‐FLR‐TDDFT and PS‐TDA‐TDDFT. Calculations for a set of medium‐sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6‐31G** basis set show PS‐TDA‐TDDFT provides 19‐ to 34‐fold speedups for Cn fullerenes with 450–1470 basis functions, 11‐ to 32‐fold speedups for nanotubes with 660–3180 basis functions, and 9‐ to 16‐fold speedups for organic molecules with 540–1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46‐residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6‐31G** basis set with up to 8100 basis functions show that PS‐FLR‐TDDFT CPU time scales as N2.05 with the number of basis functions. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package using the configuration interaction singles (CIS) and adiabatic linear response Tamm-Dancoff time-dependent density functional theory (TDA-TDDFT) methods. The speedup of the CIS and TDDFT methods using GPU-based electron repulsion integrals and density functional quadrature integration allows full ab initio excited-state calculations on molecules of unprecedented size. CIS/6-31G and TD-BLYP/6-31G benchmark timings are presented for a range of systems, including four generations of oligothiophene dendrimers, photoactive yellow protein (PYP), and the PYP chromophore solvated with 900 quantum mechanical water molecules. The effects of double and single precision integration are discussed, and mixed precision GPU integration is shown to give extremely good numerical accuracy for both CIS and TDDFT excitation energies (excitation energies within 0.0005 eV of extended double precision CPU results).  相似文献   

8.
Calculating excited-state potential-energy surfaces for systems with a large number of close-lying excited states requires the identification of the relevant electronic transitions for several geometric structures. Time-dependent density functional theory (TDDFT) is very efficient in such calculations, but the assignment of local excited states of the active molecule can be difficult. We compare the results of the frozen-density embedding (FDE) method with those of standard Kohn-Sham density-functional theory (KS-DFT) and simpler QM/MM-type methods. The FDE results are found to be more accurate for the geometry dependence of excitation energies than classical models. We also discuss how selective iterative diagonalization schemes can be exploited to directly target specific excitations for different structures. Problems due to strongly interacting orbital transitions and possible solutions are discussed. Finally, we apply FDE and the selective KS-TDDFT to investigate the potential energy surface of a high-lying π → π excitation in a pyridine molecule approaching a silver cluster.  相似文献   

9.
Excited-state quantum mechanics/molecular mechanics molecular dynamics simulations are performed, to examine the solvent effects on the fluorescence spectra of aqueous formaldehyde. For that purpose, the analytical energy gradient has been derived and implemented for the linear-response time-dependent density functional theory (TDDFT) combined with the effective fragment potential (EFP) method. The EFP method is an efficient ab initio based polarizable model that describes the explicit solvent effects on electronic excitations, in the present work within a hybrid TDDFT/EFP scheme. The new method is applied to the excited-state MD of aqueous formaldehyde in the n-π* state. The calculated π*→n transition energy and solvatochromic shift are in good agreement with other theoretical results.  相似文献   

10.
A highly efficient new algorithm for time-dependent density-functional theory (TDDFT) calculations is presented. In this algorithm, a dual-level approach to speed up DFT calculations (Nakajima and Hirao, J Chem Phys 2006, 124, 184108) is combined with a state-specific (SS) algorithm for TDDFT (Chiba et al., Chem Phys Lett 2006, 420, 391). The dual-level SS-TDDFT algorithm was applied to excitation energy calculations of typical small molecules, the Q bands of the chlorophyll A molecule, the charge-transfer energy of the zincbacteriochlorin-bacteriochlorin model system, and the lowest-lying excitation of the circumcoronene molecule. As a result, it was found that the dual-level SS-TDDFT gave correct excitation energies with errors of 0.2-0.3 eV from the standard TDDFT approach, with much lower CPU times for various types of excitation energies of large-scale molecules.  相似文献   

11.
We present a simple and efficient embedding scheme for the wave-function based calculation of the energies of local excitations in large systems. By introducing an embedding potential obtained from density-functional theory (DFT) it is possible to describe the effect of an environment on local excitations of an embedded system in wave-function theory (WFT) calculations of the excitation energies. We outline the implementation of such a WFT-in-DFT embedding procedure employing the ADF, Dalton and DIRAC codes, where the embedded subsystem is treated with coupled cluster methods. We then evaluate this procedure in the calculation of the solvatochromic shift of acetone in water and of the f-f spectrum of NpO(2)(2+) embedded in a Cs(2)UO(2)Cl(4) crystal and find that our scheme does effectively incorporate the environment effect in both cases. A particularly interesting finding is that with our embedding scheme we can model the equatorial Cl(-) ligands in NpO(2)Cl(4)(2-) quite accurately, compared to a fully wavefunction-based calculation, and this opens up the possibility of modeling the interaction of different ligands to actinyl species with relatively high accuracy but at a much reduced computational cost.  相似文献   

12.
In the present work, we propose a relativistic time-dependent density-functional theory (TDDFT) based on the two-component zeroth-order regular approximation and a noncollinear exchange-correlation (XC) functional. This two-component TDDFT formalism has the correct nonrelativistic limit and affords the correct threefold degeneracy of triplet excitations. The relativistic TDDFT formalism is implemented into the AMSTERDAM DENSITY FUNCTIONAL program package for closed-shell systems with full use of double-group symmetry to reduce the computational effort and facilitate the assignments. The performance of the formalism is tested on some closed-shell atoms, ions, and a few diatomic molecules containing heavy elements. The results show that the fine structure of the excited states for most atoms and ions studied here can be accurately accounted for with a proper XC potential. For the excitation energies of the molecules studied here, the present formalism shows promise and the error encountered is comparable to that of nonrelativistic TDDFT calculations on light elements.  相似文献   

13.
In this study, we present calculations of the circular dichroism (CD) spectra of complexes between achiral and chiral molecules. Nonzero rotational strengths for transitions of the nonchiral molecule are induced by interactions between the two molecules, which cause electronic and/or structural perturbations of the achiral molecule. We investigate if the chiral molecule (environment) can be represented only in terms of its frozen electron density, which is used to generate an effective embedding potential. The accuracy of these calculations is assessed in comparison to full supermolecular calculations. We can show that electronic effects arising from specific interactions between the two subsystems can reliably be modeled by the frozen-density representation of the chiral molecule. This is demonstrated for complexes of 2-benzoylbenzoic acid with (-)-(R)-amphetamine and for a nonchiral, artificial amino acid receptor system consisting of ferrocenecarboxylic acid bound to a crown ether, for which a complex with l-leucine is studied. Especially in the latter case, where multiple binding sites and interactions between receptor and target molecule exist, the frozen-density results compare very well with the full supermolecular calculation. We also study systems in which a cyclodextrin cavity serves as a chiral host system for a small, achiral molecule. Problems arise in that case because of the importance of excitonic couplings with excitations in the host system. The frozen-density embedding cannot describe such couplings but can only capture the direct effect of the host electron density on the electronic structure of the guest. If couplings play a role, frozen-density embedding can at best only partially describe the induced circular dichroism. To illustrate this problem, we finally construct a case in which excitonic coupling effects are much stronger than direct interactions of the subsystem densities. The frozen density embedding is then completely unsuitable.  相似文献   

14.
The nature of the excited states of [Ru(bpy)2dppz]2+ has been investigated using density functional theory with the hybrid functional B3LYP. The excitations were studied via linear response theory (TDDFT) and DeltaSCF calculations and the solvent effects were introduced by embedding the molecule in a continuum dielectric medium. It was found that the solvent effects are critical in understanding the nature of the excitations. For the molecule in ethanol, the lowest absorption predicted by TDDFT is a dark state 3pi --> pi with the electron and hole spread over the dppz ligand. Next come the excitations of 3MLCT between the ruthenium and the dppz and finally the 3MLCT excitations between the ruthenium and the bpy ligands not associated with the phenazine. Using deltaSCF calculations two low-lying excited states were identified and the geometry optimized in the presence of the continuum medium. At the optimal geometry the lowest excited state is 3MLCT (Ru --> dppz). The 3pi --> pi state is found only 0.026 eV higher.  相似文献   

15.
We report gas-phase electronic spectra of formamide, N-methyformamide, acetamide, and N-methylacetamide at 300 K calculated using a combination of classical molecular dynamics and time-dependent density functional theory (TDDFT). In comparison to excitation energies computed using the global minima structures, the valence npi* and pi(nb)pi* states show a significant red-shift of 0.1-0.35 eV, while smaller shifts are found for the n3s and pi(nb)3s Rydberg states. In this work, we have identified the physical origin of these shifts arising from variations of the molecular structure. We present simple relationships between key geometrical parameters and spectral shifts. Consequently, electronic spectra can be generated directly from ground-state structures, without additional quantum chemical calculations. The electronic spectrum of formamide in aqueous solution is computed using TDDFT using an explicit solvent model. This provides a quantitative determination of the condensed-phase spectrum. In general, this study shows that temperature effects can change the predicted excitation energies significantly and demonstrates how electronic spectra at elevated temperatures can be computed in a computationally efficient way.  相似文献   

16.
A state-specific scheme for time-dependent density functional theory (SS-TDDFT) based on the Davidson algorithm is presented. SS-TDDFT is a method devised for speeding up TDDFT calculations by screening transitions that contribute to a specific excitation. By applying this method to calculations of the low-lying excitation energies of test molecules (N2, CO, H2CO, C2H4 and C6H6), water clusters and polyenes, we found that SS-TDDFT accurately reproduced the excitation energies of standard TDDFT while drastically reducing the rank of the TDDFT response matrix without loss of accuracy. We have thus formulated TDDFT that works more efficiently and economically for memory storage.  相似文献   

17.
A subsystem formulation of time-dependent density functional theory (TDDFT) within the frozen-density embedding (FDE) framework and its practical implementation are presented, based on the formal TDDFT generalization of the FDE approach by Casida and Wesolowski [Int. J. Quantum Chem. 96, 577 (2004)]. It is shown how couplings between electronic transitions on different subsystems can be seamlessly incorporated into the formalism to overcome some of the shortcomings of the approximate TDDFT-FDE approach in use so far, which was only applicable for local subsystem excitations. In contrast to that, the approach presented here allows to include couplings between excitations on different subsystems, which become very important in aggregates composed of several similar chromophores, e.g., in biological or biomimetic light-harvesting systems. A connection to Forster- and Dexter-type excitation energy coupling expressions is established. A hybrid approach is presented and tested, in which excitation energy couplings are selectively included between different chromophore fragments, but neglected for inactive parts of the environment. It is furthermore demonstrated that the coupled TDDFT-FDE approach can cure the inability of the uncoupled FDE approach to describe induced circular dichroism in dimeric chromophores, a feature known as a "couplet," which is also related to couplings between (nearly) degenerate electronic transitions.  相似文献   

18.
We report the derivation and implementation of analytical nuclear gradients for excited states using time‐dependent density functional theory using the Tamm–Dancoff approximation combined with uncoupled frozen‐density embedding using density fitting. Explicit equations are presented and discussed. The implementation is able to treat singlet as well as triplet states and functionals using the local density approximation, the generalized gradient approximation, combinations with Hartree–Fock exchange (hybrids), and range‐separated functionals such as CAM‐B3LYP. The new method is benchmarked against supermolecule calculations in two case studies: The solvatochromic shift of the (vertical) fluorescence energy of 4‐aminophthalimide on solvation, and the first local excitation of the benzonitrile dimer. Whereas for the 4‐aminophthalimide–water complex deviations of about 0.2 eV are obtained to supermolecular calculations, for the benzonitrile dimer the maximum error for adiabatic excitation energies is below 0.01 eV due to a weak coupling of the subsystems. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
We report time-dependent density functional theory calculations of the vertical excitation energies for the singlet states of three-coordinate 5H-dibenzoborole (DBB) derivatives and four-coordinate 5-fluoro-5H-dibenzoborole ion (FDBB) derivatives. These molecules show remarkable hypsochromic (blue) shifts in their fluorescence spectra and bathochromic (red) shifts in their absorption spectra when the bridging boron atoms change their coordination number from three to four. We constructed a series of derivatives of DBB and FDBB and studied how the energies of the electronic excitations change. The states with prominent oscillator strength in all of the DBB and FDBB derivatives show similar shifts of their excitation energies upon coordination. The three-coordinate DBB derivative 5-(2,4,6-triisopropylphenyl)-2,8-dimethoxy-3,7-bis[p-(N,N-diphenylamino)phenyl]-5H-dibenzo[d,b]borole has an intense absorption at 3.25 eV, which shifts in the four-coordinate FDBB derivative 5-fluro-5-(2,4,6-triisopropylphenyl)-2,8-dimethoxy-3,7-bis[p-(N,N-dip henylamino)phenyl]-5H-dibenzo[d,b]borole ion to 3.17 eV. The experimental absorption peaks are 3.43 and 3.31 eV, respectively. In addition, we investigated and analyzed the nature of these electronic excitations using attachment/detachment density plots, with which we characterized the changes in electron density that arose from the excitations.  相似文献   

20.
Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited‐state calculations were extracted from ground‐state molecular dynamics (MD) simulations using the self‐consistent‐charge density functional tight binding (SCC‐DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited‐state calculations used time‐dependent density functional theory (TDDFT) and the DFT‐based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto‐N7H and keto‐N9H guanine, with particular focus on solvent effects in the low‐energy spectrum of the keto‐N9H tautomer. When compared with the vertical excitation energies of gas‐phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC‐DFTB‐based rather than B3LYP‐based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas‐phase and solution spectra, typically ca. 0.1–0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent‐induced structural changes and from electrostatic solute–solvent interactions, the latter being dominant. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号