首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The molar electrolyte conductivities of dilute solutions of the tetramethyl, tetraethyl, tetra-n-propyl, and tetra-n-butylammonium bromides were measured in ethanol along the liquid-vapor coexistence curve up to 160 °C. The limiting molar electrolyte conductivities and the molar association constants were obtained from the analysis of the concentration dependence of the conductivity. The ionic friction coefficients were estimated from the electrolyte conductivities. On the basis of the present data together with the literature ones at higher densities (lower temperatures) and comparisons with the continuum dielectric friction theory, the density (temperature) dependence of the translational friction coefficients of the tetraalkylammonium ions were discussed in the range of 0.810 ≥ ρ ≥ 0.634 g cm(-3) (-5 °C ≤ t ≤ 160 °C). The dielectric friction effect was important for the tetramethylammonium ion in the whole range studied. The tetraethylammonium ion showed a relatively small friction coefficient in ambient condition indicating the structure-loosening effect around the ion, while the dielectric friction effect became more important as the density reduces and the temperature raises. For the tetra-n-butylammonium ion, the friction coefficients were determined mainly by the bulky size effect. The tetra-n-propylammonium ion showed an intermediate tendency between the tetraethylammonium and tetra-n-butylammonium ions.  相似文献   

2.
The molar conductivities Lambda of KBr and KI in dilute methanol solutions were measured along the liquid-vapor coexistence curve up to the critical temperature (240 degrees C). The concentration dependence of Lambda in each condition was analyzed by the Fuoss-Chen-Justice equation to obtain the limiting molar conductivities and the molar association constants. Using the present data together with the literature ones, the validity of the Hubbard-Onsager (HO) dielectric friction theory based on the sphere-in-continuum model was examined for the translational friction coefficients zeta of the halide ions (the Cl(-), Br(-), and I(-) ions) in methanol in the density range of 2.989rho(c)> or =rho> or =1.506rho(c), where rho(c)=0.2756 g cm(-3) is the critical density of methanol. For all the halide ions studied, the friction coefficient decreased with decreasing density at rho>2.0rho(c), while the nonviscous contribution Deltazeta/zeta increased; Deltazeta was defined as the difference between zeta and the friction coefficient estimated by the Stokes law. The density dependence of zeta and Deltazeta/zeta were well reproduced by the HO theory at rho>2.0rho(c). The HO theory also explained the ion-size dependence of Deltazeta/zeta which decreased with ion-size at rho>2.0rho(c). At rho<2.0rho(c), on the other hand, the HO theory could not explain the density and the ion-size dependences of zeta and Deltazeta/zeta. These results indicated that the application limit of the HO theory lied about rho=2.0rho(c) which is the same as the application limit observed for the alkali metal ions. The present results were also compared with the results in subcritical aqueous solutions.  相似文献   

3.
The molar conductivities Lambda of NaCl, KCl, and CsCl in liquid methanol were measured in the concentration range of (0.3-2.0) x 10(-3) mol dm(-3) and the temperature range of 60-240 degrees C along the liquid-vapor coexistence curve. The temperature range corresponds to the solvent density range of (2.78-1.55)rhoc, where rhoc = 0.2756 g cm(-3) is the critical density of methanol. The concentration dependence of Lambda at each temperature and density (pressure) has been analyzed by the Fuoss-Chen-Justice equation to obtain the limiting molar conductivity Lambda0 and the molar association constant KA. For all the electrolytes studied, Lambda0 increased almost linearly with decreasing density at densities above 2.0rhoc, while the opposite tendency was observed at lower densities. The relative contribution of the nonhydrodynamic effect on the translational friction coefficient zeta was estimated in terms of Deltazeta/zeta, where the residual friction coefficient Deltazeta is the difference between zeta and the Stokes friction coefficient zetaS. At densities above 2.0rhoc, Deltazeta/zeta increased with decreasing density though zeta and Deltazeta decrease, and the tendencies are common for all the ions studied. The density dependences of zeta and Deltazeta/zeta were explained well by the Hubbard-Onsager (HO) dielectric friction theory based on the sphere-in-continuum model. At densities below 2.0rhoc, however, the experimental results cannot be explained by the HO theory.  相似文献   

4.
Supramolecular aggregates of tetraalkylammonium halides (R4NX) are formed by electrospray out of acetonitrile solution. Mass spectrometry reveals 88 charged aggregates for R= Me, Et, Bu; X= Br, I, ranging up to [(Bu4N)39Br42]3- in size. With the objective of improving calculations of intermolecular energies for supramolecular aggregates of ions, calibrated semi-empirical potentials for inter-ion interactions have been developed and applied to these aggregates. The accuracy of the calculated energies is supported by the measured collisional dissociation energy of (Et4N+)4 (I-)5. Energy optimisations indicate that the probable structures have the halide ions dispersed in a matrix of cations, which, for Bu4N+, can be mutually attractive. The aggregates are structurally fluid, with multiple structures separated by 4-8 kJmol(-1). The energy calculations are entirely consistent with the observed formation of large aggregates, and of multiply charged anions. It is estimated that the cohesive energies of supramolecular assemblies of ions such as these reach about 40 kJmol(-1) per constituent ion.  相似文献   

5.
The effect of short alkyl chain cations on the modification of the structure, surface and textural properties of organo-montmorillonites upon their acid treatment was investigated. Samples prepared from Ca-SAz montmorillonite and tetramethylammonium (Me(4)N(+)-), tetraethylammonium (Et(4)N(+)-), tetrapropylammonium (Pr(4)N(+)-) and tetrabutylammonium (Bu(4)N(+)-) salts were treated in 6 M HCl at 80 °C for 2-8 h and analyzed by different methods. Acid treatment of organo-montmorillonites caused gradual release of Al and Mg from the octahedral sheets and destruction of their layered structure. The extent of the changes depended significantly on the size of organo-cation. While large plate-like particles of Ca-SAz and Me(4)N-SAz were disintegrated during acid treatment and smaller fine grains were created, the morphology of Bu(4)N-SAz was modified only slightly. Pore size analysis showed generation of pore network upon organo-montmorillonites dissolution. After longer acid attack, pore volume increased and pore size distribution curves were shifted to pores with diameter above 25 ?. The surface area of acid-treated samples increased due to destruction of the montmorillonite layers and formation of the SiO(2)-rich reaction product. The highest value 475 m(2)/g was observed for Me(4)N-SAz treated 4 h. Surface area of Et(4)N-SAz, Pr(4)-SAz and Bu(4)N-SAz was 441, 419 and 293 m(2)/g, respectively, after 8 h treatment. Similar decomposition level was observed for Ca-SAz and Me(4)N-SAz, and less destruction was found for Et(4)N-SAz, Pr(4)-SAz and very low for Bu(4)N-SAz. Though Bu(4)N(+) is short alkyl chain cation, its size is large enough to cover the inner and outer surfaces of montmorillonite and thus to protect the clay layers from acid attack.  相似文献   

6.
Cyclic voltammograms of several polycyclic aromatic hydrocarbons (PAH's) in highly purified N,N-dimethylformamide are known to exhibit two reversible reduction waves. To a good approximation, the potential of the first wave is independent of the nature of the supporting electrolyte, but the potential of the second wave is highly dependent upon the nature of the electrolyte. The spacing ΔE° between the first and second waves increases as the size of the cation of the electrolyte is increased from Et(4)N(+) through Pr(4)N(+) to Bu(4)N(+). This is typically interpreted as due to decreasing strength of ion-pairing between the cation and the dianion of the PAH with increasing size of the electrolyte cation. However, it has been known for many years that Me(4)N(+) exhibits anomalous behavior: even though Me(4)N(+) is much smaller than Et(4)N(+), ΔE° is greater with Me(4)N(+) than with Et(4)N(+) for anthracene and in fact greater than any of the larger electrolytes with perylene. It is now shown that this behavior arises out of the fact that Me(4)N(+) ion is present in solution as a tetrasolvate [Me(4)N(+)/(DMF)(4)]. The PAH dianion (Ar(-2)) reacts with Me(4)N(+)/(DMF)(4) to displace a molecule of DMF and produce the species Me(4)N(+)/(DMF)(3)/Ar(-2). The computed pairing association constant K(ion-pairing) for the anthracene species is 35 M(-1), compared with a value of 50,000 M(-1) for association of the bare Me(4)N(+) ion with the dianion; the corresponding values for perylene are computed to be 4400 and 3.5 M(-1), respectively.  相似文献   

7.
The migration behavior of three calix[4]pyrroles (C4Ps) in acetonitrile (ACN) and in the mixtures of ACN/ethanol (EtOH) (95:5; v/v)with tetraalkylammonium chloride as background electrolyte (BGE) was studied. Electroosmotic flow (EOF) mobilities and absolute mobilities in ACN and mixture of ACN/EtOH (95:5; v/v) were investigated. A decrease of EOF mobilities in EtOH/ACN was observed compared with that of in pure ACN. Variation of the C4Ps effective mobilities as a function of the square root of concentration of tetraakylammonium chloride salts such as tetramethylammonium chloride (Me4NCl), tetraethylammonium chloride (Et4NCl) and tetrabutylammonium chloride (Bu4NCl) in both solvents was plotted, and straight lines were exhibited when Bu(4)NCl was used as BGE. Absolute mobilities of C4Ps were obtained by extrapolation from the mentioned plots. It was found that the absolute mobilities of C4Ps is independent of the nature of BGE and the values are: meso-octamethylcalix[4]pyrrole (OMCP)>meso-tetracyclopentylcalix[4]pyrrole (TPCP)>meso-tetracyclohexylcalix[4]pyrrole (THCP). The ion-pairing constants follow the order under given solvent: Me4N+>Et4N+>Bu4N+, and ion-pairing constant of C4P follows the order: THCP>TPCP>OMCP. As though, ion-pairing association is intensified by steric hindrance.  相似文献   

8.
The factors that influence the rate of alkylation of phenol under phase transfer catalysis (PTC) have been investigated in detail. Six linear, symmetrical tetraalkylammonium cations, Me(4)N(+), Et(4)N(+), (n-Pr)(4)N(+), (n-Bu)(4)N(+), (n-Hex)(4)N(+), and (n-Oct)(4)N(+), were examined to compare the effects of cationic radius and lipophilicity on the rate of alkylation. Tetraalkylammonium phenoxide·phenol salts were prepared, and their intrinsic reactivity was determined from initial alkylation rates with n-butyl bromide in homogeneous solution. The catalytic activity of the same tetraalkylammonium phenoxides was determined under PTC conditions (under an extraction mechanism) employing quaternary ammonium bromide catalysts. In homogeneous solution the range in reactivity was small (6.8-fold) for Me(4)N(+) to (n-Oct)(4)N(+). In contrast, under PTC conditions a larger range in reactivity was observed (663-fold). The effective concentration of the tetraalkylammonium phenoxides in the organic phase was identified as the primary factor influencing catalyst activity. Additionally, titration of active phenoxide in the organic phase confirmed the presence of both phenol and potassium phenoxide aggregates with (n-Bu)(4)N(+), (n-Hex)(4)N(+), and (n-Oct)(4)N(+), each with a unique aggregate stoichiometry. The aggregate stoichiometry did not affect the PTC initial alkylation rates.  相似文献   

9.
Crystalline materials have been synthesized in reactions of titanium(iv) tetraisobutoxide with branched organic acids (HOOCR', R' = CMe(2)Et, (t)Bu, CH(2)(t)Bu) in the molar ratio 1:1 at room temperature under Ar atmosphere. Particular attention has been paid to the structural and spectral characterization of metastable intermediate complexes of general formula [Ti(7)O(9)(O(i)Bu)(4)(HO(i)Bu)(OOCCMe(2)Et)(6)](2) (1) and [Ti(6)O(5)(O(i)Bu)(6)(OOC(t)Bu)(8)] (3), and their conversion towards more structurally stable compounds [Ti(6)O(6)(O(i)Bu)(6)(OOCC(Me)(2)Et)(6)] (2) and [Ti(6)O(6)(H(2)O)(2)(O(i)Bu)(6)(OOC(t)Bu)(6)] (4). The hexanuclear structure of (5) ([Ti(6)O(6)(O(i)Bu)(6)(OOCCH(2)(t)Bu)(6)]) has been postulated on the basis of IR and (13)C NMR spectroscopic data analysis. The possible reaction pathways which may occur during the formation of the above mentioned compounds are also discussed.  相似文献   

10.
Lithium complexes bearing dianionic amine bis(phenolate) ligands are described. Reactions of ligand precursors H(2)O(2)NN(Me), H(2)O(2)NN(Py) or H(2)O(2)NO(Me) [H(2)O(2)NN(Me)=Me(2)NCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NN(Py)=(2-C(5)H(4)N)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NO(Me)=MeOCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2)] with 2.2 molar equivalents of (n)BuLi in diethylether afford (Li(2)O(2)NN(Me))(2) (1), (Li(2)O(2)NN(Py))(2) (2) and (Li(2)O(2)NO(Me))(2) (3) as tetra-nuclear lithium complexes. The crystalline solids of partially hydrolyzed product, (LiO(HO)NN(Py)) (4), were obtained from recrystallization of 2 in diethylether solution for three months. The synthesis of (LiO(HO)NO(Me))(2) (5) was carried out at ambient temperature by carefully layering a solution of water in hexane on top of a solution of 3 in Et(2)O. Crystalline solids of were obtained after two months. Molecular structures are reported for compounds 1, 3, 4 and 5. Compounds 1-3 show excellent catalytic activities toward the ring-opening polymerization of L-lactide in the presence of benzyl alcohol.  相似文献   

11.
The values of the partial molal volumes for NaI, Kl, Et4NCl, Bu4NI, and R4NBr (R=Me, Et, Pr, Bu, Am) at infinite dilution in ethanol between 233 and 313 K are reported. Using a method proposed by the authors, partial molar volumes are divided into their ionic constituents at all the temperatures investigated. The changes of the partial molar volumes with temperature are positive for cations and decrease with a decrease in the ionic size whereas those for halide ions are negative and practically independent of the ionic size. The various contributions to the partial molar volume were evaluated and their dependence on the ionic nature and temperature are discussed.  相似文献   

12.
The densities of tetraalkylammonium bromide, R4NBr (R = Et, Pr, Bu, Hex, Hep, Oct), solutions in dimethylformamide have been measured for the composition range (0.05–0.4) mol-kg−1 at 25 C. Apparent molar Vφ and limiting partial molar volumes 2o of the electrolytes have been evaluated. Using the extrapolation values, the limiting partial molar volumes of the tetraalkymammonium ions (io) have been calculated. Analysis of different contributions to the ionic io indicated partial penetration of solvent molecules into the van der Waal’s volume of tetraalkylammonium (TAA) ions.  相似文献   

13.
α-(2-苯并噻唑氧基)烃基膦酸酯的合成性质和生物活性   总被引:5,自引:0,他引:5  
为探索α-芳(杂 环)磷酸衍生物的生物活性,寻求含磷农药的新母体,合成了十六个未见文献报道的α-(苯并噻唑-2-氧代)烃基膦酸衍生物,所有化合物的结构均IR,HNMR, 元素分析等确证,并对生物活性进行了初步的研究.  相似文献   

14.
A series of hafnocene complexes (eta5-C5Me4R1)(eta5-C5Me4R2)HfCl2 with [R1, R2] = [H, H] (1), [Me, H] (2), [Me, Me] (3), [Et, Me] (4), [(i)Pr, Me] (5), [SiMe(3), Me] (6), [(t)Bu, Me] (7), [(n)Bu, Me] (8), [(i)Bu, Me] (9), [Et, Et] (10), [(n)Bu, (n)Bu] (11), [(i)Bu, (i)Bu] (12) was tested as catalyst precursors for propylene oligomerization. Upon activation with methylaluminoxane or [Ph(3)C][B(C(6)F(5))(4)]/Al(i)Bu(3), complexes 2-4 and 8-12 catalyzed the dimerization of propylene to produce 4-methyl-1-pentene with selectivities ranging from 23.9 to 61.6 wt % in the product mixture. The selectivity was dependent on the nature of the substituents R(1) and R(2), with the highest value found for (eta5-C5Me4(i)Bu)2HfCl2 (12). Rapid deactivation was observed for 5-7, whereas (eta5-C5Me4H)2HfCl2 (1) polymerized propylene. 4-Methyl-1-pentene is proposed to form by repeated 1,2-insertion of propylene into the hafnocene methyl cation, followed by selective beta-methyl elimination. Detailed analysis of the byproduct distribution (isobutene, 1-pentene, 2-methyl-1-pentene, 2,4-dimethyl-1-pentene, 4-methyl-1-heptene, 4,6-dimethyl-1-heptene), determined by gas chromatography, was performed with the aid of a stochastic simulation involving rate constants for the propagation by insertion, beta-hydride elimination, and beta-methyl elimination. The rate of termination is dependent on the structure of the growing chain of the active species as well as on the bulkiness of the cyclopentadienyl ligands. The selectivity highly depends on the reaction conditions (pressure, temperature, concentration of methylaluminoxane). The rates of beta-methyl elimination leading to 4-methyl-1-pentene were proportional to propylene pressure for 2-4 and 8-10 but practically independent from propylene pressure for the sterically bulkier derivatives 11-12.  相似文献   

15.
Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.  相似文献   

16.
The solubility diagrams in ternary MBr2-NR4Br-H2O systems (M = Cd, Co; R = Me, Et, Bu) at 25°C were determined by isothermal saturation. The composition and crystallization range of solid compounds occurring in equilibrium with the liquid phase were found. The effects of ion hydration, association of tetraalkylammonium salts, and complex formation with d-elements on the solution-solid phase equilibrium were estimated.  相似文献   

17.
Optimal conditions for the complexation of transition metal ions [Cu(II), Ni(II), Co(II, III), and Fe(II, III)] with 1-nitroso-2-naphthol-2,6-disulfonic acid have been determined by spectrophotometry in the presence of cationic (cetylpyridinium and cetyltrimethylammonium bromides) and nonionic (OP-10, neonol) surfactants. The introduction of nonionic surfactants does not influence the optical parameters of the system, while the introduction of cationic ones leads to hyperchromic and hypsochromic (for the system Fe(III)-NRS-surfactant) effects. The stoichiometric ratios determined by the method of isomolar series and treatment of the saturation curves of cationic surfactants at pH 4.0 are Me(II): R: surfactant = 1: 2: 4, Me(III): R: surfactant = 1: 3: 6. The molar absorption coefficients and chromaticity parameters of ternary complexes have been determined. A 2–5-fold increase in the molar absorption coefficients and chromaticity functions as compared to binary systems has been revealed.  相似文献   

18.
Addition of tert-butylisocyanide or 2,6-dimethylphenylisocyanide to a solution of trialkylaluminum or trialkylgallium results in formation of complexes R(3)M·C≡N(t)Bu (M = Al, R = Me (1), Et (2), (i)Bu (3), (t)Bu (4); M = Ga, R = (t)Bu (9)) or R(3)M·C≡N(2,6-Me(2)C(6)H(3)) (M = Al, R = Me (5), Et (6), (i)Bu (7), (t)Bu (8); M = Ga, R = (t)Bu (10)), respectively. Complexes 1, 4, 5, and 8-10 are isolated as solids, whereas the triethylaluminum and triisobutylaluminum adducts 2, 3, 6, and 7 are viscous oils. Complexes 1-10 were characterized by NMR ((1)H, (13)C) and IR spectroscopies, and the molecular structures of 4, 5, and 8-10 were also determined by X-ray crystallography. The frequency of the C≡N stretch of the isocyanide increased by 58-91 cm(-1) upon complexation, consistent with coordination of the isocyanide as a σ donor. Enthalpies of complex formation for 1-10 were determined by isothermal titration calorimetry. Enthalpy data suggest the following order of decreasing Lewis acidity: (t)Bu(3)Al ? (i)Bu(3)Al ≥ Me(3)Al ≈ Et(3)Al ? (t)Bu(3)Ga. In the absence of oxygen and protic reagents, the reported complexes do not undergo insertion or elimination reactions upon heating their benzene-d(6) solutions to 80 °C.  相似文献   

19.
Ion association between inorganic anions and symmetrical tetraalkylammonium ions, R4N+ (R = Me, Et, Pr, n-Bu, n-Am, and 2-methyl butyl {isoamyl = iAm}) was investigated using ordinary silica capillary by capillary zone electrophoresis. An improved version of the Williams-Vigh method was used for the first time to measure the mobilities of the inorganic anions. Plots of log Kass against log dielectric constant in various media, revealed a smaller change in Kass compared to dielectric constant. These plots suggest that the Bjerrum's equation is inadequate in accounting for the associations of ions in a CZE setup.  相似文献   

20.
The reactions of Zr(NR(2))(4) (1, R = Me; 2, R = Et) with an asymmetrical tridentate pincer type pyrrole ligand precursor [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] and treatment of the derivatives with either PhNCS or PhNCO have been carried out and characterized. Reacting Zr(NR(2))(4) (1, R = Me; 2, R = Et) with [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] generates Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NR(2))(2) (3, R = Me; 4, R = Et) in high yield along with the elimination of 2 equiv of dimethylamine or diethylamine, respectively. Interestingly, while changing the solvent from Et(2)O to CH(2)Cl(2), the complex Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))][C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))]Cl (5) is produced by undergoing C-Cl bond cleavage. Furthermore, reaction of either 3 or 4 with 1 or 2 equiv of PhNCS or PhNCO yields Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NMe(2))[PhNC(NMe(2))S] (6), Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NEt(2))[PhNC(NEt(2))O] (7) and Zr[C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))][PhNC(NEt(2))O](3) (8), respectively. All the aforementioned complexes were characterized by (1)H and (13)C NMR spectrometry and the molecular structures of 5, 6, and 8 have been determined by single-crystal X-ray diffractometry. Complexes 4, 5, and 7 initiated the ethylene polymerization in the presence of MAO as the co-catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号