首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irradiation of metallic surfaces using ultra-short pulse laser results in a dual-scale structure. While metallic surfaces are superhydrophilic immediately after laser irradiation, prolonged exposure to air renders surfaces superhydrophobic due to surface reactions and deposition of carbonaceous materials onto the surface. In this work, we have fabricated a paraboloid microstructure, which is analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle and contact angle hysteresis. The effects of the geometrical details on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics.  相似文献   

2.
Advancing (theta(A)) and receding (theta(R)) contact angles were measured with several probe liquids on the external facets (201), (001), (011), and (110) of macroscopic form I paracetamol crystals as well as the cleaved (internal) facet (010). For the external crystal facets, dispersive surface energies gamma(d) calculated from the contact angles were found to be similar (34 +/- 1 mJ/m(2)), while the polar components varied significantly. Cleaving the crystals exposed a more apolar (010) surface with very different surface properties, including gamma(d) = 45 +/- 1 mJ/m(2). The relative surface polarity (gamma(p)/gamma) of the facets in decreasing order was (001) > (011) > (201) > (110) > (010), which agreed with the fraction of exposed polar hydroxyl groups as determined from C and O 1s X-ray photoelectron spectroscopy (XPS) spectra, and could be correlated with the number of non-hydrogen-bonded hydroxyl groups per unit area present for each crystal facet, based on the known crystal structures. In conclusion, all facets of form I paracetamol crystals examined exhibited anisotropic wetting behavior and surface energetics that correlated to the presence of surface hydroxyl groups.  相似文献   

3.
We explore the atomic and electronic structures of single-crystalline aluminum nitride nanowires (AlNNWs) and thick-walled aluminum nitride nanotubes (AlNNTs) with the diameters ranging from 0.7 to 2.2 nm by using first-principles calculations and molecular dynamics simulations based on density functional theory (DFT). We find that the preferable lateral facets of AlNNWs and thick-walled AlNNTs are {1010} surfaces, giving rise to hexagonal cross sections. Quite different from the cylindrical network of hexagons revealed in single-walled AlNNTs, the wall of thick-walled AlNNTs displays a wurtzite structure. The strain energies per atom in AlNNWs are proportional to the inverse of the wire diameter, whereas those in thick-walled AlNNTs are independent of tube diameter but proportional to the inverse of the wall thickness. Thick-walled AlNNTs are energetically comparable to AlNNWs of similar diameter, and both of them are energetically more favorable than single-walled AlNNTs. Both AlNNWs and AlNNTs are wide band gap semiconductors accompanied with surface states located in the band gap of bulk wurtzite AlN.  相似文献   

4.
Quantum mechanical calculations have been carried out to investigate the structural properties and the interaction between water molecules and silanol groups on the surface of silicalite-1. The (010) surface, which is perpendicular to the straight channel, has been selected and represented by three fragments taken from different parts of the surface. Calculations have been performed using different levels of accuracy: HF/6-31G(d,p), B3LYP/6-31G(d,p), HF/6-31++G(d,p), and B3LYP/6-31++G(d,p). The basis set superposition error has been taken into account. The geometry of the silanol groups and that of the water molecules have been fully optimized. The results show that the most stable conformation takes place when a water molecule forms two hydrogen bonds with two silanols, with only one silanol lying on the opening of the pore of the straight channel. The corresponding binding energy is -48.82 kJ/mol. These areas are supposed to be the first binding sites which have to be covered when the water molecule approaches the surface. When the water loading increases, the next favorable silanols are those of the opening of the pore in which the four possible complex conformations yield a binding energy between -25.62 and -37.41 kJ/mol. It was also found that the calculated O-H bond length of the silanol in the free form was slightly shorter than that in the complex. In terms of the stretching frequency, the complexation leads to a red shift of the O-H stretching of the silanol group.  相似文献   

5.
6.
Surface oxidation of Cu(100) in O(2) has been investigated in situ by x-ray photoelectron spectroscopy, x-ray induced Auger electron spectroscopy (XAES), and scanning tunneling microscopy (STM) as a function of surface temperature (T(S)=303-423 K) and O(2) pressure (p(O(2) )=3.7 x 10(-2)-213 mbars). Morphology of the oxide on the surface and in the near surface layers is characterized by utilizing STM and the inelastic electron background of the XAES O KLL signal. Analysis of the peak shape of the XAES Cu LMM facilitates the quantification of Cu, Cu(2)O, and CuO surface concentrations. The authors conclude that the surface oxidation of Cu(100) proceeds in three distinct steps: (1) Dissociative adsorption of O(2) and the onset of Cu-(2 square root 2 x square root 2)R45 degrees -O (theta(O)=0.5 ML) surface reconstruction, (2) initial formation of Cu(2)O and the appearance of 1.8 A high elongated islands that also adopt the Cu-(2 square root 2 x square root 2)R45 degrees -O structure, and (3) formation of highly corrugated Cu-O islands which together with the surface reconstruction strongly enhance the reactivity of the surface towards further oxide formation. Both Cu(2)O and CuO formations are enhanced by increased surface temperature, but no pressure dependence can be seen.  相似文献   

7.
In the topological approach to structure-property relationships, the molecular structure is described in terms of appropriate weighted graphs to which suitable topological parameters, usually known as molecular connectivity indices, can be associated. Molecular connectivity indices are here applied to the prediction of surface free energy and Good-van Oss-Chaudhury acid-base components of organic compounds. To this aim, some quantitative structure-property relationships (QSPRs) are determined, involving both topological indices and group indicator variables of the customary functional group theory. The semiempirical models obtained to appear satisfactory and show significant advantages with respect to the models based on the purely functional group approach.  相似文献   

8.
Illustrative quantum-chemical calculations for selected atomic and molecular chemisorbates on Pt(111) (modeled as a finite cluster) are undertaken as a function of external field, F, by using Density Functional Theory (DFT) with the aim of ascertaining the sensitivity of the field-dependent metal-adsorbate binding energetics and vibrational frequencies (i.e., the vibrational Stark effect) to the nature of the surface coordination in electrochemical systems. The adsorbates selected--Cl, I, O, N, Na, NH(3), and CO--include chemically important examples featuring both electron-withdrawing and -donating characteristics. The direction of metal-adsorbate charge polarization, characterized by the static dipole moment, mu(S), determines the binding energy-field (E(b-F) slopes, while the corresponding Stark-tuning behavior is controlled primarily by the dynamic dipole moment, mu(D). Significantly, analysis of the F-dependent sensitivity of mu(S) and mu(D) leads to a general adsorbate classification. For electronegative adsorbates, such as O and Cl, both mu(S) and mu(D) are negative, the opposite being the case for electropositive adsorbates. However, for systems forming dative-covalent rather than ionic bonds, as exemplified here by NH(3) and CO, mu(S) and mu(D) have opposite signs. The latter behavior, including electron-donating and -withdrawing categories, arises from diminishing metal-chemisorbate orbital overlap, and hence the extent of charge polarization, as the bond is stretched. A clear-cut distinction between these different types of surface bonding is therefore obtainable by combining vibrational Stark-tuning and E(b)-F slopes, as extracted from experimental data and/or DFT calculations. The former behavior is illustrated by means of potential-dependent Raman spectral data obtained in our laboratory.  相似文献   

9.
Protein adsorption onto hydrophobic chromatographic supports has been investigated using a colloid theory surface energetics approach. The surface properties of commercially available chromatographic beads, Toyopearl Phenyl 650‐C, and Toyopearl Butyl 650‐C, have been experimentally determined by contact angle and zeta potential measurements. The adsorption characteristics of these beads, which bear the same backbone matrix but harbor different ligands, have been studied toward selected model proteins, in the hydrated as well as dehydrated state. There were two prominent groups of proteins observed with respect to the chromatographic supports presented in this work: loosely retained proteins, which were expected to have lower average interaction energies, and the strongly retained proteins, which were expected to have higher average interaction energies. Results were also compared and contrasted with calculations derived from adsorbent surface energies determined by inverse liquid chromatography. These results showed a good qualitative agreement, and the interaction energy minima obtained from these extended Derjaguin, Landau, Verwey and Overbeek calculations were shown to correlate well with the experimentally determined adsorption behavior of each protein.  相似文献   

10.
Russian Journal of General Chemistry - A procedure for the synthesis of composite nanocoating TiO2/calcium phosphate structures on the titanium surface promising for biomedical application (bone...  相似文献   

11.
In light of the recent silylation route to protonated pentacyanocyclopentadienyl (PCCp) anion reported by Richardson and Reed, PCCp anion, neutral radical, and protonated species have been investigated theoretically. The predicted adiabatic electron affinity for PCCp (ZPVE-corrected value in parentheses) is enormous, 5.56 (5.47) eV. As with the unsubstituted cyclopentadienyl radical, the PCCp radical exhibits a Jahn-Teller distortion from the D(5)(h) symmetry of the aromatic anion, yielding five equivalent (2)B(2) minima that should show uninhibited pseudorotation about a D(5)(h) conical intersection. Formation of the conjugate acid occurs via protonation of the anion at a nitrile nitrogen, which is favored over protonation at a ring carbon by 6.5 kcal/mol, with the preference explained by retention of aromaticity upon protonation at the nitrogen. Possible acid dimer structures have been investigated to evaluate the proposed polymeric acid structure of Richardson and Reed. Our predictions confirm their suggested polymeric structure, but we also present an alternative, self-contained dimer that should be competitive kinetically and thermodynamically. Vibrational frequencies and infrared intensities are predicted, to aid in the experimental identification of several of these species.  相似文献   

12.
13.
IDEA, interface dynamics and energetics algorithm, was implemented, in FORTRAN, under different operating systems to mimic dynamics and energetics of elementary events involved in interfacial processes. The code included a parallel elaboration scheme in which both the stochastic and the deterministic components, involved in the developed physical model, worked simultaneously. IDEA also embodied an optionally running VISUAL subroutine, showing the dynamic energy changes caused by the surface events, e.g., occurring at the gas-solid interface. Monte Carlo and ordinary differential equation system subroutines were employed in a synergistic way to drive the occurrence of the elementary events and to manage the implied energy flows, respectively. Biphase processes, namely isothermal and isobaric adsorption of carbon monoxide on nickel, palladium, and platinum surfaces, were first studied to test the capability of the code in modeling real frames. On the whole, the simulated results showed that IDEA could reproduce the inner characteristics of the studied systems and predict properties not yet experimentally investigated.  相似文献   

14.
We report on the investigation of the surface morphology and DC conductivity of nanostructured layer-by-layer (LbL) films from nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with either multi-walled carbon nanotubes (MWNTs/NiTsPc) or multi-walled carbon nanotubes dispersed in chitosan (MWNTs+Ch/NiTsPc). We have explored the surface morphology of the films by using fractal concepts and dynamic scale laws. The MWNTs/NiTsPc LbL films were found to have a fractal dimension of ca. 2, indicating a quasi Euclidean surface. MWNTs+Ch/NiTsPc LbL films are described by the Lai-Das Sarma-Villain (LDV) model, which predicts the deposition of particles and their subsequent relaxation. An increase in the wetting contact angle of MWNTs+Ch/NiTsPc LbL films was observed, as compared with MWNTs/NiTsPc LbL films, which presented an increase in the fractal dimension of the first system. Room temperature conductivities were found be ca. 0.45 S/cm for MWNTs/NiTsPc and 1.35 S/cm for MWNTs+Ch/NiTsPc.  相似文献   

15.
16.
The adsorption of lignin on cellulose fibres at neutral pH and the effects of calcium ions and a cationic polyelectrolyte (PDADMAC) on the adsorption have been studied. The surface coverage by lignin was determined by electron spectroscopy for chemical analysis (ESCA). The morphology of the lignin layer was studied by atomic force microscopy (AFM). The effect of adsorbed polyelectrolyte and lignin on the strength properties of the paper was also studied. The adsorbed amount of lignin increased monotonically with lignin concentration. Addition of calcium ions resulted in a very high surface coverage by lignin. PDADMAC did not enhance the adsorption of lignin, but without addition of polyelectrolyte the lignin was very weakly attached to the fibre surface. PDADMAC formed complexes with lignin in solution. At high polymer/lignin concentration ratios the charge of the complex was positive and it adsorbed irreversibly as large blobs. At low ratios the complex was easily washed away from the fibre surface. When PDADMAC was pre-adsorbed on the fibre surface the lignin adsorbed as small granules at all lignin concentrations. Neither PDADMAC nor lignin alone increased the strength of pulp sheets significantly. However, together they increased the bonding between fibres.  相似文献   

17.
The surface energies of various inorganic fillers including kaolin clay, titanium dioxide, and talc were examined using inverse gas chromatography (IGC). In an earlier investigation that examined calcium carbonate fillers, dehydration by heating under a dry nitrogen purge had a substantial influence on the apolar (gammaS(LW)) and polar (gammaS(AB)) components of surface energy as measured using IGC. Using the same approach, the influence of such conditioning on several inorganic fillers used in papermaking were determined using preconditioning IGC from 100 to 300 degrees C, and sequential isothermal analysis at 100 degrees C. Results from IGC analysis of titanium dioxides (rutile and anatase) were similar to precipitated calcium carbonate (PCC) for temperatures up to 200 degrees C. PCC was significantly more energetic after preconditioning at 300 degrees C, which may indicate the onset of significant thermal decomposition that titanium dioxides will not exhibit. Kaolin clay samples had relatively high apolar surface energy similar to that of the chalk samples. Calcination gave lower gammaS(LW) values that could not be accounted for by changes in the microporous structure. More likely the differences resulted from contamination of highly energetic surface sites with adsorbates other than water. Talc samples exhibited relatively high apolar surface energies that increased with preconditioning temperature. The results provided insight into the significance of water on the final adhesion properties of fillers in the sheet structure or coating layer.  相似文献   

18.
Spin-polarized density functional theory calculations have been performed to characterize the hydrogen adsorption and diffusion on the Fe(111) surface at 2/3-, 1-, and 2-monolayer (ML) coverages. It is found that the most favored adsorption site for atomic hydrogen (H) is the top-shallow bridge site (tsb), followed by the quasi 4-fold site (qff) with the energy difference of about 0.1 eV, while the top site (t) is not competitive. Furthermore, the adsorbed atomic hydrogen (H) has a high mobility, as indicated by the small diffusion barriers. The local density of state (LDOS) analysis reveals that the Fe-H (tsb or qff) bond involves mainly the Fe 4s and 4p and H 1s orbitals with less contribution of the Fe 3d orbital, while the Fe 4s, 4p, and 3d orbitals all participate in the Fe-H (top) bond. In addition, the coverage effects on the adsorption configurations and adsorption energies are addressed.  相似文献   

19.
The effect of pH on the formation of precipitates (lignin, extractives and metals) on kraft pulp surfaces was examined by electron spectroscopy for chemical analysis, time-of-flight secondary ion mass spectrometry and atomic force microscopy (AFM). A softwood kraft pulp slurry from an oxygen delignification stage was diluted to 3% consistency with water or an acidic Z filtrate. After heating to 70 °C the pH was lowered from 11 to 2–5, using sulphuric acid. Lignin and extractives precipitated at pH values below 6, and their amounts increased with decreasing pH. Most of the precipitated lignin was found on the pulp surface after sheet forming, whereas the main part of the precipitated extractives could be easily washed away with water. The layer of precipitated lignin was apparently thicker than the layer of extractives. AFM showed the precipitated material as a granular phase. Neither surface morphology nor surface coverage depended on the addition of Z filtrate. The amount of metals ID the pulp and on the pulp surface decreased when pH was lowered to 2. More metals, such as Ca and Mg, were detected ID the pulps as well as on the sheet surfaces when the pulp was diluted with Z filtrate. Strength and bonding properties of the pulp sheets were slightly impaired by the precipitated material. Acidification appears to be the main reason for the precipitation of both lignin and extractives on the pulp surfaces. This should be taken into account when filtrates are recycled ID the bleaching or washing of pulps.  相似文献   

20.
Probe molecule spectroscopy and hygroscopic growth curves characterize the morphology of surfactant-coated aerosol particles as a function of relative humidity (RH). This study focuses on particles composed of either potassium iodide or sodium chloride and sodium dodecyl sulfate (SDS). At high RH, these mixed particles assume a reverse micelle type structure, and at low RH, they comprise a solid core of either KI or NaCl coated with SDS and water. The deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of the inorganic fraction of the mixed particles are very similar to those of the pure salts. The surface polarity and morphology sampled by the coumarin 314 probe molecule ranges from that of a water-organic interface to that of an ionic surface and depends strongly on the RH and the amount of SDS. When the SDS coverage of the droplet just prior to efflorescence reaches approximately one monolayer, a thin soap film persists on the surface to values of RH much lower than the ERH. Both the electronic spectroscopy and photoelectric charging efficiency show a separate efflorescence for this layer at RH < 5%. The spectroscopy further reveals that there is a hysteresis associated with this low RH phase transition for both KI and NaCl cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号