首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the photoinduced isomerization from 1,3-cyclohexadiene to 1,3,5-hexatriene in the presence of an intense ultrafast laser pulse. We find that the laser field maximally suppresses isomerization if it is both polarized parallel to the excitation dipole and present 50 fs after the initial photoabsorption, at the time when the system is expected to be in the vicinity of a conical intersection that mediates this structural transition. A modified ab initio multiple spawning (AIMS) method shows that the laser induces a resonant coupling between the excited state and the ground state, i.e., a light-induced conical intersection. The theory accounts for the timing and direction of the effect.  相似文献   

2.
Using multireference configuration interaction expansions comprised of over 7 million configuration state functions, three-state conical intersections are reported for the closely spaced, spectroscopically observed (tilde)B(2A1), (tilde)C(2B1), and (tilde)D(2B2) states (in C(2v) symmetry) of the allyl radical. These conical intersections of states which were previously assigned as the 3,4,5(2)A states and are here reassigned as the 4,5,6(2)A states, are expected to be accessible using optical probes. This conclusion is obtained from the structure of the minimum energy point on the 4,5,6(2)A three-state conical intersection seam which is similar to the equilibrium structure of the ground (tilde)X(2A2) state and only 1.1 eV above the (tilde)D(2B2) state at its equilibrium geometry. The seam of three-state degeneracies joins two two-state seams of conical intersection, the 4,5(2)A and 5,6(2)A conical intersection seams. The energy of the minimum energy point on the 4,5(2)A two-state seam is only 0.15 eV above that of the (tilde)D(2B2) state at its equilibrium structure. Three-state intersections are also reported for the 3,4,5(2)A states.  相似文献   

3.
The energy of the lowest triplet state of organic molecules is intermediate between the ground state and the first excited singlet. At the S1/S0 conical intersection, the two singlet states are degenerate. It is shown that for some molecules (ethylene, benzene, toluene and pyrrole) the T1 state is also degenerate with the two singlet states. Moreover, the spin orbit coupling matrix element at this structure is necessarily large, so that intersystem crossing can be quite efficient. If the lowest triplet state is repulsive (as in the studied molecules) it may significantly contribute to the dissociation yield under certain experimental conditions.  相似文献   

4.
Reaction dynamics of prototypical, D + H2 and Cl (2P) + H2, chemical reactions occurring through the conical intersections of the respective coupled multi-sheeted potential energy surfaces is examined here. In addition to the electronic coupling, nonadiabatic effects due to relativistic spin-orbit coupling are also considered for the latter reaction. A time-dependent wave packet propagation approach is undertaken and the quantum dynamical observables viz., energy resolved reaction probabilities, integral reaction cross-sections and thermal rate constants are reported.  相似文献   

5.
In this article are considered the conical intersections (ci's) related to the N-H bond in the methylamine, CH(3)NH(2), molecule. The novel feature that was revealed is that the two lowest states 1A(') and 1A(") are coupled by a line of cis located in HC-NHH plane-a line that is formed by moving a single hydrogen on that plane while fixing the (six) other atoms. The validity of this line was proven first by studying the singularities of the (angular) nonadiabatic coupling terms and then by revealing the degeneracy points formed by the two interacting adiabatic potential energy surfaces (PESs). A theoretical analysis indicated that the line has to be a finite closed line. We also calculated the Berry phase for a contour that surrounds this line and found it to be 3.127 rad, namely, a value reasonably close to pi. The existence of such lines of cis-instead of isolated cis (as exhibited by other n-atomic (n>3) molecules such as HNCO or C(2)H(2))-may enhance significantly the transition rate from an upper adiabatic state to a lower one. There are also numerical advantages in such situations, that is, if such a line is properly placed in that plane (like in the present case) the wave-packet treatment of the nuclei can be carried out employing a single diabatic PES instead of having to consider two coupled PESs.  相似文献   

6.
A new computerized method for locating conical intersections of interest in photochemistry is presented. The search is based on the Longuet-Higgins phase change theorem (Berry phase) which provides the subspace required for the initial search. The subspace is approximated as a plane containing three stable structures lying on a Longuet-Higgins loop. The search is conducted for a minimum of ΔE, the energy difference between two electronic states. It is started using up to three points within the circle defined by the three structures; symmetry, if relevant, is helpful but not essential. Since a two-dimensional subspace of the large 3N − 6 space is used, the search that uses either Cartesian or internal coordinates is efficient and yields a degeneracy after a few iterations. Given that not all degrees of freedom are included in the search, usually a high lying part of the conical intersection is initially located. The system is subsequently optimized along all coordinates keeping ΔE as close to zero as desired. The method is demonstrated for the symmetric H3 system and also for the butadiene–cyclobutene–bicyclobutane system in which the three stable structures are not equivalent. The method is general and can be extended to any photochemical system.  相似文献   

7.
The involvement of three-state conical intersections in the photophysics and radiationless decay processes of the nucleobases has been investigated using multireference configuration interaction methods. Three-state conical intersections have been located for the pyrimidine base, uracil, and the purine base, adenine. In uracil, a three-state degeneracy between the S(0), S(1), and S(2) states has been located at 6.2 eV above the ground-state minimum energy. This energy is 0.4 eV higher than vertical excitation to S(2) and at least 1.3 eV higher than the two-state conical intersections found previously. In adenine, two different three-state degeneracies between the S(1), S(2), and S(3) states have been located at energies close to the vertical excitation energies. The energetics of these three-state conical intersections suggest they can play a role in a radiationless decay pathway present in adenine. The existence of two different seams of three-state conical intersections indicates that these features are common and complicate the potential energy surfaces of adenine and possibly many other aromatic molecules.  相似文献   

8.
We introduce a new method for optimizing minimal energy conical intersections (MECIs), based on a sequential penalty constrained optimization in conjunction with a smoothing function. The method is applied to optimize MECI geometries using the multistate formulation of second-order multireference perturbation theory (MS-CASPT2). Resulting geometries and energetics for conjugated molecules including ethylene, butadiene, stilbene, and the green fluorescent protein chromophore are compared with state-averaged complete active space self-consistent field (SA-CASSCF) and, where possible, benchmark multireference single- and double-excitation configuration interaction (MRSDCI) optimizations. Finally, we introduce the idea of "minimal distance conical intersections", which are points on the intersection seam that lie closest to some specified geometry such as the Franck-Condon point or a local minimum on the excited state.  相似文献   

9.
Multiconfigurational second-order perturbation theory has been employed to calculate two-dimensional potential energy surfaces for the lowest low-lying singlet electronic states of CH2BrCl as a function of the two carbon-halogen bonds. The photochemistry of the system is controlled by a nonadiabatic crossing occurring between the A and B bands, attributed to the b1A' and c1A' states, which are found almost degenerate and forming a near-degeneracy line of almost equidistant C-Br and C-Cl bonds. A crossing point in the near-degeneracy line is identified as a conical intersection in this reduced two-dimensional space. The positions of the conical intersection located at CASSCF, single-state (SS)-CASPT2, and multistate (MS)-CASPT2 levels of theory are compared, also paying attention to the nonorthogonality problem of perturbative approaches. To validate the presence of the conical intersection versus an avoided crossing, the geometrical phase effect has been checked using the multiconfigurational MS-CASPT2 wave function.  相似文献   

10.
Three-state conical intersections have been located and characterized for cytosine and its analog 5-methyl-2-pyrimidinone using multireference configuration-interaction ab initio methods. The potential energy surfaces for each base contain three different three-state intersections: two different S(0)-S(1)-S(2) intersections (gs/pi pi(*)/n(N)pi(*) and gs/pi pi(*)/n(O)pi(*)) and an S(1)-S(2)-S(3) intersection (pi pi(*)/n(N)pi(*)/n(O)pi(*)). Two-state seam paths from these intersections are shown to be connected to previously reported two-state conical intersections. Nonadiabatic coupling terms have been calculated, and the effects of the proximal third state on these quantities are detailed. In particular, it is shown that when one of these loops incorporates more than one seam point, there is a profound and predictable effect on the phase of the nonadiabatic coupling terms, and as such provides a diagnostic for the presence and location of additional seams. In addition, it is shown that each of the three three-state conical intersections located on cytosine and 5-methyl-2-pyrimidinone is qualitatively similar between the two bases in terms of energies and character, implying that, like with the stationary points and two-state conical intersections previously reported for these two bases, there is an underlying pattern of energy surfaces for 2-pyrimidinone bases, in general, and this pattern also includes three-state conical intersections.  相似文献   

11.
12.
The combinatorial invariant and covariant are introduced as practical tools for analysis of conical intersections in molecules. The combinatorial invariant is a quantity depending on adiabatic electronic states taken at discrete nuclear configuration points. It is invariant to the phase choice (gauge) of these states. In the limit that the points trace a loop in nuclear configuration space, the value of the invariant approaches the corresponding Berry phase factor. The Berry phase indicates the presence of an odd or even number of conical intersections on surfaces bounded by these loops. Based on the combinatorial invariant, we develop a computationally simple and efficient method for locating conical intersections. The method is robust due to its use of gauge invariant nature. It does not rely on the landscape of intersecting potential energy surfaces nor does it require the computation of nonadiabatic couplings. We generalize the concept to open paths and combinatorial covariants for higher dimensions obtaining a technique for the construction of the gauge-covariant adiabatic-diabatic transformation matrix. This too does not make use of nonadiabatic couplings. The importance of using gauge-covariant expressions is underlined throughout. These techniques can be readily implemented by standard quantum chemistry codes.  相似文献   

13.
The technological needs imposed by the exponential miniaturization trend of conventional electronic devices has drawn attention towards the development of smaller and faster devices like ultrafast molecular switches. In recent years molecular switches emerge again in the focus of active and innovative research with state-of-the-art optical tools recording their dynamics in real time. Still many questions about the underlying microscopic mechanism are left open, including potential factors that effect the switching process in either way, improve or worsen it. Due to the complexity of such molecules it is difficult to obtain a global answer from experiment alone. On the other side molecular switches are generally too large for a complete quantum chemical and quantum dynamical calculation. In our group we therefore developed an ab initio based modular model to handle the laser induced quantum dynamics in molecular switches like fulgides. It enables us to study the effect of internal molecular coupling and of the molecular response to external fields. We can investigate the related wave packet dynamics, the switching efficiency and the controllability. Our results focus on the laser induced ring opening in fulgides, which equals one direction of the switching process. Presented are the influence of a conical intersection seam and of time-dependent potentials, mimicking the mean interaction with the environment. Furthermore the relation of controllability and the wave packet's momentum is studied and the influence of potential barriers on the switching dynamics is shown.  相似文献   

14.
A method for obtaining partial differential cross sections for low energy electron photodetachment in which the electronic states of the residual molecule are strongly coupled by conical intersections is reported. The method is based on the iterative solution to a Lippmann-Schwinger equation, using a zeroth order Hamiltonian consisting of the bound nonadiabatically coupled residual molecule and a free electron. The solution to the Lippmann-Schwinger equation involves only standard electronic structure techniques and a standard three-dimensional free particle Green's function quadrature for which fast techniques exist. The transition dipole moment for electron photodetachment, is a sum of matrix elements each involving one nonorthogonal orbital obtained from the solution to the Lippmann-Schwinger equation. An expression for the electron photodetachment transition dipole matrix element in terms of Dyson orbitals, which does not make the usual orthogonality assumptions, is derived.  相似文献   

15.
The role of conical intersections in the photodissociation of the A 1A2" state of NH3 is investigated using extended atomic basis sets and a configuration state function expansion of approximately 8.5 million terms. A previously unknown portion of the 1 1A-2 1A seam of conical intersections with only C(s) symmetry is located. This portion of the seam is readily accessible from the equilibrium geometry of the A 1A2" state. These conical intersections are expected to play a role in the competition between adiabatic and nonadiabatic pathways for NH3(A 1A2") photodissociation.  相似文献   

16.
We consider photoinduced electronic transitions through conical intersections in large molecules. Starting from the linear vibronic model Hamiltonian and treating linear diabatic couplings within the second order cumulant expansion, we have developed a simple analytical expression for the time evolution of electronic populations at finite temperature. The derived expression can be seen as a nonequilibrium generalization of the Fermi golden rule due to a nonequilibrium character of the initial photoinduced nuclear distribution. All parameters in our model are obtained from electronic structure calculations followed by a diabatization procedure. The results of our model are found to agree well with those of quantum dynamics for a test set of systems: fulvene molecule, 2,6-bis(methylene) adamantyl cation, and its dimethyl derivative.  相似文献   

17.
We have calculated the semiclassical shape of the absorption band for a triatomic complex of C2V symmetry, corresponding to an electronic transition from the non-degenerate ground-state and two excited states Ai, Bi (i=1, 2) when there exists a point of accidental degeneracy Ai=Bi. The analysis is done assuming that two normal vibrations are excited, one of which is nontotally symmetric. A comparison is made with the band of the transition, characterizing optical absorption in Jahn-Teller systems.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 3, pp. 337–339, May–June, 1989.  相似文献   

18.
In this work, degenerate perturbation theory through second order is used to characterize the vicinity of a three state conical intersection. This report extends our recent demonstration that it is possible to describe the branching space (in which the degeneracy is lifted linearly) and seam space (in which the degeneracy is preserved) in the vicinity of a two state conical intersection using second order perturbation theory. The general analysis developed here is based on a group homomorphism approach. Second order perturbation theory, in conjunction with high quality ab initio electronic structure data, produces an approximately diabatic Hamiltonian whose eigenenergies and eigenstates can accurately describe the three adiabatic potential energy surfaces, the interstate derivative couplings, and the branching and seam spaces in their full dimensionality. The application of this approach to the minimum energy three state conical intersection of the pyrazolyl radical demonstrates the potential of this method. A Hamiltonian comprised of the ten characteristic (linear) parameters and over 300 second order parameters is constructed to describe the branching space associated with a point of conical intersection. The second order parameters are determined using data at only 30 points. In the vicinity of the conical intersection the energy and derivative couplings are well reproduced and the singularity in the derivative coupling is analyzed.  相似文献   

19.
Second-order degenerate perturbation theory, in conjunction with the group homomorphism method for describing a similarity transformation, are used to characterize the subspace of two-state conical intersections contained in the branching space of a three-state conical intersection. It is shown by explicit calculation, using the lowest three-state conical intersection of (CH)3N2, that a second-order treatment yields highly accurate absolute energies, even at significant distances from the reference point of three-state intersection. The excellent agreement between the second order and ab initio results depends on the average energy component, which is computed using 5 first-order terms and 15 second-order terms. The second-order absolute energy change over the range rho = 0.0-0.3 au, where rho is the distance from the three-state conical intersection in the branching space coordinates, is approximately 6500 and 9500 cm(-1) for the E(1=2) and E(2=3) seams, respectively, with the maximum ab initio energy deviation from degeneracy of 200 cm(-1) occurring at rho = 0.3 au. The characteristic parameters gIJ and hIJ are also predicted to great accuracy, even at large rho, with the error growing to only 10-15% at rho = 0.3 au.  相似文献   

20.
A parametrization of the three asymptotic conical intersections between the energies of the H3(+) ground state and the first excited singlet state is presented. The influence of an additional, fourth conical intersection between the first and second excited states at the equilateral geometry on the connection between the three conical regions is studied, for both diatomics-in-molecules and ab initio molecular data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号