首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method, entitled the discrete global descent method, is developed in this paper to solve discrete global optimization problems and nonlinear integer programming problems. This method moves from one discrete minimizer of the objective function f to another better one at each iteration with the help of an auxiliary function, entitled the discrete global descent function. The discrete global descent function guarantees that its discrete minimizers coincide with the better discrete minimizers of f under some standard assumptions. This property also ensures that a better discrete minimizer of f can be found by some classical local search methods. Numerical experiments on several test problems with up to 100 integer variables and up to 1.38 × 10104 feasible points have demonstrated the applicability and efficiency of the proposed method.  相似文献   

2.
This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical duality–triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples.  相似文献   

3.
Direct-type global optimization algorithms often spend an excessive number of function evaluations on problems with many local optima exploring suboptimal local minima, thereby delaying discovery of the global minimum. In this paper, a globally-biased simplicial partition Disimpl algorithm for global optimization of expensive Lipschitz continuous functions with an unknown Lipschitz constant is proposed. A scheme for an adaptive balancing of local and global information during the search is introduced, implemented, experimentally investigated, and compared with the well-known Direct and Direct l methods. Extensive numerical experiments executed on 800 multidimensional multiextremal test functions show a promising performance of the new acceleration technique with respect to competitors.  相似文献   

4.
非线性整数规划的一个近似算法   总被引:13,自引:1,他引:13  
利用连续总体优化填充函数法的思想,本文设计了非线性整数规划的一个近似算法.首先,给出了非线性整数规划问题离散局部极小解的定义,设计了找离散局部极小解的局部搜索算法;其次,用所设计的局部搜索算法极小化填充函数来找比当前离散局部极小解好的解.本文的近似算法是直接法,且与连续总体优化的填充函数法相比,本文填充函数中的参数易于选取.数值试验表明,本文的近似算法是有效的.  相似文献   

5.
We consider linear programming problems with some equality constraints. For such problems, surrogate relaxation formulations relaxing equality constraints existwith zero primal-dual gap both when all variables are restricted to be integers and when no variable is required to be integer. However, for such surrogate formulations, when the variables are mixed-integer, the primal-dual gap may not be zero. We establish this latter result by a counterexample.  相似文献   

6.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

7.
This paper is concerned with the development of an algorithm to solve continuous polynomial programming problems for which the objective function and the constraints are specified polynomials. A linear programming relaxation is derived for the problem based on a Reformulation Linearization Technique (RLT), which generates nonlinear (polynomial) implied constraints to be included in the original problem, and subsequently linearizes the resulting problem by defining new variables, one for each distinct polynomial term. This construct is then used to obtain lower bounds in the context of a proposed branch and bound scheme, which is proven to converge to a global optimal solution. A numerical example is presented to illustrate the proposed algorithm.  相似文献   

8.
9.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

10.
We consider maximin and minimax nonlinear mixed integer programming problems which are nonsymmetric in duality sense. Under weaker (pseudo-convex/pseudo-concave) assumptions, we show that the supremum infimum of the maximin problem is greater than or equal to the infimum supremum of the minimax problem. As a particular case, this result reduces to the weak duality theorem for minimax and symmetric dual nonlinear mixed integer programming problems. Further, this is used to generalize available results on minimax and symmetric duality in nonlinear mixed integer programming.  相似文献   

11.
In this paper we propose an algorithm using only the values of the objective function and constraints for solving one-dimensional global optimization problems where both the objective function and constraints are Lipschitzean and nonlinear. The constrained problem is reduced to an unconstrained one by the index scheme. To solve the reduced problem a new method with local tuning on the behavior of the objective function and constraints over different sectors of the search region is proposed. Sufficient conditions of global convergence are established. We also present results of some numerical experiments.  相似文献   

12.
A local trajectory-based method for solving mixed integer nonlinear programming problems is proposed. The method is based on the trajectory-based method for continuous optimization problems. The method has three phases, each of which performs continuous minimizations via the solution of systems of differential equations. A number of novel contributions, such as an adaptive step size strategy for numerical integration and a strategy for updating the penalty parameter, are introduced. We have shown that the optimal value obtained by the proposed method is at least as good as the minimizer predicted by a recent definition of a mixed integer local minimizer. Computational results are presented, showing the effectiveness of the method.  相似文献   

13.
In this paper, a partial enumeration algorithm is developed for a class of pure IP problems. Then, a computational algorithm, named PE_SPEEDUP (partial enumeration speedup), has been developed to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to understand and implement, yet very effective in dealing with many pure IP problems, including knapsack problems, reliability optimization, and spare allocation problems. The algorithm is based on monotonicity properties of the problem functions, and uses function values only; it does not require continuity or differentiability of the problem functions. This allows its use on problems whose functions cannot be expressed in closed algebraic form. The reliability and efficiency of the proposed algorithm and the PE_SPEEDUP algorithm has been demonstrated on some integer optimization problems taken from the literature.  相似文献   

14.
We introduce a-posteriori and a-priori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the NLP relaxation of a mixed-integer nonlinear optimization problem. Our analysis mainly bases on the construction of a tractable approximation of the so-called grid relaxation retract. Under appropriate Lipschitz assumptions on the defining functions, we thereby generalize and slightly improve results for the mixed-integer linear case from Stein (Mathematical Programming, 2015, doi: 10.1007/s10107-015-0872-7). In particular, we identify cases in which the optimality and feasibility errors tend to zero at an at least linear rate for increasingly refined meshes.  相似文献   

15.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

16.
In this paper, we present an improved Partial Enumeration Algorithm for Integer Programming Problems by developing a special algorithm, named PE_SPEEDUP (partial enumeration speedup), to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to understand and implement, yet very effective in dealing with many integer programming problems, including knapsack problems, reliability optimization, and spare allocation problems. The algorithm is based on monotonicity properties of the problem functions, and uses function values only; it does not require continuity or differentiability of the problem functions. This allows its use on problems whose functions cannot be expressed in closed algebraic form. The reliability and efficiency of the proposed PE_SPEEDUP algorithm has been demonstrated on some integer optimization problems taken from the literature.  相似文献   

17.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

18.
19.
提出一个求解带箱子约束的一般多项式规划问题的全局最优化算法, 该算法包含两个阶段, 在第一个阶段, 利用局部最优化算法找到一个局部最优解. 在第二阶段, 利用一个在单位球上致密的向量序列, 将多元多项式转化为一元多项式, 通过求解一元多项式的根, 找到一个比当前局部最优解更好的点作为初始点, 回到第一个 阶段, 从而得到一个更好的局部最优解, 通过两个阶段的循环最终找到问题的全局最优解, 并给出了算法收敛性分析. 最后, 数值结果表明了算法是有效的.  相似文献   

20.
Nonlinear integer programming problems with bounded feasible sets are considered. It is shown how the number of constraints in such problems can be reduced with the aid of an exact penalty function approach. This approach can be used to construct an equivalent unconstrained problem, or a problem with a constraint set which makes it easier to solve. The application of this approach to various nonlinear integer programming problems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号