首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Synthesis of mullite has been achieved at a low temperature of 600 °C by sol–gel technique in presence of nickel and cobalt ions. Samples were characterized by DTA, XRD, FESEM and FTIR spectroscopy. Mullite formation was found to depend on the concentration of the ions to a certain extent. Highly crystalline spherical mullite particles of dimension 35 nm were obtained at 0.02 M nickel or cobalt concentration.  相似文献   

2.
The adsorption of a poly(vinyl acetate-co-maleate) (PVAM) emulsion onto E-glass fibers was investigated along with sizing formulations prepared by mixing the PVAM with varying concentrations of -methacryloxypropyltrimethoxysilane (MPS). The sized E-glass fibers were then characterized using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Loss on Ignition (LOI) along with the DRIFT spectra indicated that the addition of silane to the PVAM emulsion caused a decrease in the amount of size on the fiber. The decrease in amount of size on the E-glass fibers did not coincide with a decrease in surface coverage, instead the XPS results indicated surface coverage had increased with silane addition. These results showed that small increases in the silane concentration appear to affect the amount of size adsorbed to the E-glass fibers  相似文献   

3.
pH dependence of the adsorption of Na, Sc, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, and Pd on -Fe2O3 from a 0.1 mol dm–3 NaCl solution was studied by using a multitracer technique. Desorption of the metal ions from the -Fe2O3 with the adsorbed metal ions at pH 11 was also studied by lowering the pH of the suspensions. The desorption curve of each element was in good agreement with the adsorption curve except for Ru and Rh under conditions studied. Adsorption kinetics showed that the adsorption of most metal ions increases with shaking time before an adsorption equilibrium is attained. An increase in the adsorption was also observed with an elevation in temperature for the elements, suggesting that the adsorption is involved in chemisorption.  相似文献   

4.
Cobalt (Co) is a potential therapeutic ion used to enhance angiogenesis through a stabilizing effect on hypoxia-inducible factor 1 alpha (HIF-1α), and its incorporation into the structure of bioactive glass is a promising strategy to enable sustained local delivery of Co to a wound site or bone defect. Here Co-releasing bioactive glasses were obtained through the sol–gel method, comparing cobalt nitrate and cobalt chloride as precursors. The effect of using different Co precursors on the sol–gel synthesis and in the obtained bioactive glass structure, chemical composition, morphology, dissolution behaviour, hydroxycarbonate apatite (HCA) layer formation was investigated. When the chloride salt was used as Co precursor, evidence of crystalline cobalt (II, III) oxide (Co3O4) phase formation was found, along with the presence of Co3+ species as evaluated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), whereas an amorphous glass containing mainly Co2+ species was obtained when the nitrate salt was the Co source. The presence of a crystalline phase decreased the surface area and pore volume of the final glass, consequently reducing the Co-release rate. Evidence of HCA layer formation after immersion in simulated body fluid (SBF) was still found when different precursors were used, although the rate of formation was reduced by the presence of Co. Therefore, this study showed that Co incorporation and the proper selection of the precursor could affect the final material structure, and properties, and should be considered when designing new bioactive glass compositions for tissue engineering applications.  相似文献   

5.
A new method using nanoparticle TiO2 as solid-phase extractant coupled with ICP-AES was proposed for simultaneous determination of trace elements. The adsorption behavior of nanometer TiO2 towards Cu, Cr, Mn and Ni was investigated by ICP-AES, and the adsorption pH curves, adsorption isotherms and adsorption capacities were obtained. It was found that the adsorption rates of the metal ions studied were more than 90% in pH 8.0~9.0, and 2.0 mol L–1 HCl was sufficient for complete elution. Nanometer TiO2 possesses a significant capacity for the sorption of the metal ions studied which is higher than the capacity of silica, the commonly used extractant. The method has been applied to the analysis of some environmental samples with satisfactory results.  相似文献   

6.
In this paper, the formation of hydroxypropyl-β-cyclodextrin (HPCD) nanofibers in electrospinning and the adsorption of organic molecules on the HPCD nanofiber were studied. The properties of a polymer-like solution from the highly concentrated HPCD/N,N-dimethylformamide (DMF) solution revealed HPCD supramolecular aggregates formation. The entanglements of HPCD self-organized aggregates were one of the most important factors that significantly influenced fiber formation during cyclodextrin electrospinning. The HPCD self-organized aggregates entanglement concentration (C(e)) was investigated. Analyzing the dependence of specific viscosity (η(sp)) on concentration enabled the determination of the aggregates unentangled and entangled regimes for HPCD polymer-like solutions. The dynamic light scattering (DLS) measurements and the (1)H NMR spectra of the HPCD solutions confirmed the presence of considerable HPCD self-organized aggregates in high concentrated HPCD/DMF solutions due to the intermolecular hydrogen bonding. The scanning electron microscopy (SEM) showed the electrospinning morphology transitioned from regular beads to uniform fibers with increasing the HPCD concentration. The dependence of the fiber diameter on the zero shear rate viscosity (η(0)) was determined. The static adsorption behavior of the HPCD fibers was studied. Neutral red (NR) was used as a model organic molecule. The adsorption of NR onto HPCD fibers fitted the pseudo-second-order kinetic model. The equilibrium adsorption amount of NR was 18.41 mg g(-1), and the apparent adsorption rate constant was 9.83 × 10(-4) g mg(-1) min(-1) at 25 °C.  相似文献   

7.
In this work, the values of entropy changes related to n-hexane adsorption onto ion-exchanged ZSM-5 zeolites were calculated from differential heats, obtained from microcalorimetric experiments. The existence of enthalpy–entropy compensation effect, evidenced by the linearity of −ΔH vs. −ΔS plots and characteristic for all investigated ZSM-5 zeolites, was found. In the case of ZSM-5 structure, modifying the zeolite structure by ion-exchange gives rise to changes in the heats of adsorption and adsorption entropy in the same manner. The factors that can influence the appearance of entropy–enthalpy compensation were discussed. It was found that compensation effect is governed by ion-induced dipole interaction between highly polarising cationic centres in zeolite and nonopolar n-hexane molecules, and hence, depends on the size, charge and electron configuration of the cation. It was found also that the compensation temperature is in correlation with the number of zeolites’ strong acid centres. Contrary to the adsorption of n-hexane on ZSM-5 zeolites, compensation effect was not found for the adsorption of the same gas on faujasite-type zeolites.  相似文献   

8.
9.
Metal nanowires composed of Fe–Co and Fe–Co–Ni alloys were successfully prepared by means of cyclic voltammetry (CV) and pulse-reverse (PR) electroplating techniques from acidic metal chloride solutions. The anodic dissolution process in the CVs or in the reverse electroplating period was found to be the key factor influencing the formation of metal nanowires. The addition of nickel into the Fe–Co alloy was found to extend the diameter of these nanowires. The morphology and crystalline information of these alloy deposits prepared by CV and PR deposition techniques were obtained from the field-emission scanning electron microscopic (FE-SEM) photographs and X-ray diffraction (XRD) patterns, respectively.  相似文献   

10.
Fe/Zr-base metal–organic frameworks(Fe/Zr-MOFs) were prepared using a solvothermal method from 1,3,5-phthalic acid (H3BTC, 98 %) as the organic chain and ferrous heptahydrate (FeSO4·7H2O) and zirconium acetate Zr(CH3COO)4] as the metal ions. The resulting material was used to remove Doxycycline hydrochloride (DC). The experimental results showed that when the concentration of DC was 10 ppm and the mass of Zr/Fe-MOFs was 100 mg, the maximum removal rate after 5 h was 87.5 %. The results showed that the correlation coefficients (R2) of the pseudo-second-order kinetics model and Freundlich isotherm model of Zr/Fe-MOFs adsorption of DC were greater than 0.99, indicating good consistency. The results showed that the adsorption process of DC by Zr/Fe-MOFs was endothermic and spontaneous. Fe/Zr-MOFs had a high adsorption capacity for DC removal and good application prospects.  相似文献   

11.
Although mid-infrared reflection—absorption spectroscopy is almost routine in some laboratories, the application of this technique to far-infrared spectroscopy is generally acknowledged as a difficult experiment at best. In this report the effect of increasing optical indices with wavelength for metals is demonstrated to be a root cause of this difficulty. When appropriate, iron is a reasonable substrate because of the comparatively small imaginary component of its refractive index in the far-infrared region. In addition, there is only a modest loss in spectral intensity of the spectrum for a film on iron relative to the use of the more noble metals as substrate.  相似文献   

12.
The influence of the Ni2+/Cr3+ ratio in the precursor compound on the formation of the catalyst structure and its transformation upon the thermal treatment and reductive activation in hydrogen was studied. The precursors with the cation ratio Ni2+/Cr3+ = (2.3–3)/1 represent a homogeneous system of the stichtite-type structure. The treatment of the precursors at T ~400 °C in an inert atmosphere forms a nanosized phase of the NiO-type structure with the lattice parameter a = 4.186±0.005 Å. At 600 °C the lattice parameter of this phase decreases to the tabulated value (a = 4.177±0.005 Å). The phase of nickel chromite of the cubic spinel structure with the lattice parameter a = 8.320±0.005 Å is also observed. Hydrogen activation of the catalyst preheated at 300 °C in an inert gas leads to the formation of Ni0 crystallites with a size of ~5.5 nm and a specific surface area of ~7.0 m2 g?1. This catalyst exhibits high activity and selectivity in benzene hydrogenation and preferential CO hydrogenation in the presence of CO2. The catalysts with the ratio Ni2+/Cr3+ = 1/(2?3) containing nickel and chromium hydroxocarbonates as precursors are less active in the hydrogenation of benzene to cyclohexane.  相似文献   

13.
The adsorption of VB12 onto CMK-3 was studied as a function of temperature and initial VB12 concentration. The highest VB12 adsorption capacity was determined as 353.4 mg/g at 40℃. Adsorption data were well described by the Langmuir model, although they could be modelled by the Freundlich equation. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The pseudo-second-oider kinetic model provided the best correlation of the experimental data compared to the pseudo-nrsi-order model.  相似文献   

14.
1,10-Phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neocuproine), and 4,7-dimethyl-1,10-phenanthroline have been intercalated between layers of -zirconium phosphate (-ZrP). The observed interlayer distances are not a simple function of the size of guest molecules. Despite the fact that -ZrP takes up very few Fe2+ ions, the phen and neocuproine intercalates do take up some Fe2+ ions without further changes in the interlayer distances. The chemical environments around Fe2+ ions between layers of the intercalates were investigated by57Fe Mössbauer spectroscopy. A fairly large fraction of the Fe2+ ions was found to be in a high-spin state. The low-spin [Fe(phen)3]2+ ions are also ion exchanged on -ZrP, with the expansion of the interlayer up to 19.9 Å.  相似文献   

15.
16.
Epoxy–clay nanocomposites have been prepared with an organically modified montmorillonite. The epoxy network was based on diglycidyl ether of bisphenol A (DGEBA) cured with diaminodiphenylmethane (DDM). The stoichiometry DGEBA–DDM was varied, the molar ratio of amine hydrogen/epoxy groups, r, ranged from 0.85 to 1.15. The influence of stoichiometry on curing and properties of the nanocomposites was studied using differential scanning calorimetry, dynamic mechanical thermal analysis and X-ray diffraction. All nanocomposites had intercalated clay structures. The clays accelerated the curing reaction whose rate was also increased when increasing r. The heat of reaction, −ΔH (J/g epoxy), increased as r increased, reaching a constant value for r ≥ 1. In the presence of clays −ΔH was lower than in the neat DGEBA–DDM. The glass transition temperature (T g) of the neat epoxy thermosets reached a maximum at r = 1; however, the nanocomposites showed the T g maximum at 0.9 < r < 1. The presence of clay lowered the T g for r > 0.94 and raised T g for r ≤ 0.85. The elastic modulus of neat epoxy thermosets reached a maximum in the rubber state and a minimum in the glassy state at r = 1. The nanocomposites showed similar behavior, but the maximum and the minimum values of the elastic modulus were reached at stoichiometry r < 1. The comparison of the properties of neat epoxy with those of the nanocomposites varying the stoichiometry indicates that the clay itself induces stoichiometric changes in the system.  相似文献   

17.
We report a facile and economic hydrothermal process for multifunctionally engineered copper oxide/zinc oxide-tetrapods (CuO/ZnO-T) nanocomposite for wastewater treatment. The resultant CuO/ZnO-T nanocomposite possesses high porosity, large surface area, and low band gap. All these properties are advantageous for photocatalyst and adsorbent for dyes and heavy metal ions removal. The morphology of synthesized nanocomposite was characterized using X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller, Fourier-transform infrared spectroscopy, and UV–Visible absorption spectroscopy. The results confirmed the attachment of CuO on the ZnO-T surface, forming a hybrid nanocomposite. The concentration of heavy metal ions was monitored using the atomic absorption spectroscopy technique. The synthesized CuO/ZnO-T nanocomposite was investigated for the decontamination of anionic and cationic dyes, Reactive yellow-145 (RY-145) and Basic violet-3 (BV-3) and heavy metal ions (Chromium (VI) and Lead (II)). The CuO/ZnO-T nanocomposite exhibited superior photocatalytic efficiency (80% RY-145 dye removal and 86% BV-3 dye removal) and adsorption capacity (99% Chromium (VI) removal and 97% Lead (II) removal) as compared to pristine ZnO-T. The mechanism for the reduction of dyes and heavy metal ions was discussed by different kinetics and isotherm models. The current study inferred that CuO/ZnO-T nanocomposite is a potential candidate as a proficient photocatalyst/adsorbent for the removal of various wastewater contaminants.  相似文献   

18.

Products of sorption of uranyl ions on HDTMA-red clay in the presence of phosphates were characterized by thermal analysis. It was established on the basis of DTG curves of the sorption products and FTIR spectra of the gaseous phase of sorption products decomposition that the thermal stability of the mineral increased when P(V) ions were sorbed along with U(VI) ions, i.e., the temperature of defragmentation/oxidation of surfactant increased when going from U(VI)–HDTMA-clay to U(VI)–P(V)–HDTMA-clay to P(V)–HDTMA-clay. The DSC curves of the sorption products showed that defragmentation/oxidation was an exothermic process and dehydration and dehydroxylation had an endothermic character. The investigated sorption system has practical importance, since an evident increase in U(VI) sorption over the entire pH range is observed when going from U(VI)–HDTMA-clay to U(VI)–P(V)–HDTMA-clay.

  相似文献   

19.
This paper examines the effect of fibre diameter on filtration and flux distribution with inter-fibre two-phase flow for conditions relevant to submerged bioreactors (SMBR). Hollow fibres of different diameters fixed in a specially designed holder providing shell-side feed were tested for a model biomass feed with pumping and submerged systems. The experimental results showed that the effect of the fibre diameter on filtration increased with the increase in turbulence around the fibres. For filtration with two-phase flow, the performance was sensitive to changes in fibre diameter and significantly lower flux declines were obtained with smaller fibres. On the other hand, a theoretical analysis of flux distribution along the fibre in a submerged system showed the smaller fibres to be disadvantaged. The theoretical model based on the simplified Navier–Stokes equations and filtration equations revealed that the flux distribution along the fibre depends on fibre inner diameter, length and fibre permeability. The effect of these factors can be related to a dimensionless coefficient ζ=4lRi−3/2Rm−1/2. Sensitivity analysis demonstrated that for ζ>2, the maximum flux along the fibre can be approximately estimated by Jmax=ζJmi. Although, the effect of high initial local flux on performance of filtration is still to be assessed, the flux distribution model is useful in design and operation of the SMBR system.  相似文献   

20.
The kinetic behaviour of oximate ions was studied in the transfer of the toluenesulfonyl group in aqueous dimethylsulfoxide (0–95 vol.% DMSO). The solvation effects of the solvent are a factor controlling the nucleophilicity and magnitude of the α-effect of the oximate ions. L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, 70 R. Lyuksemburg ul., Donetsk 340114, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 36, No. 1, pp. 30–35, January–February, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号