首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
This paper concerns the problem of robust control of uncertain fractional-order nonlinear complex systems. After establishing a simple linear sliding surface, the sliding mode theory is used to derive a novel robust fractional control law for ensuring the existence of the sliding motion in finite time. We use a nonsmooth positive definitive function to prove the stability of the controlled system based on the fractional version of the Lyapunov stability theorem. In order to avoid the chattering, which is inherent in conventional sliding mode controllers, we transfer the sign function of the control input into the first derivative of the control signal. The proposed sliding mode approach is also applied for control of a class of nonlinear fractional-order systems via a single control input. Simulation results indicate that the proposed fractional variable structure controller works well for stabilization of hyperchaotic and chaotic complex fractional-order nonlinear systems. Moreover, it is revealed that the control inputs are free of chattering and practical.  相似文献   

2.
In this paper, a novel fractional-order terminal sliding mode control approach is introduced to control/synchronize chaos of fractional-order nonautonomous chaotic/hyperchaotic systems in a given finite time. The effects of model uncertainties and external disturbances are fully taken into account. First, a novel fractional nonsingular terminal sliding surface is proposed and its finite-time convergence to zero is analytically proved. Then an appropriate robust fractional sliding mode control law is proposed to ensure the occurrence of the sliding motion in a given finite time. The fractional version of the Lyapunov stability is used to prove the finite-time existence of the sliding motion. The proposed control scheme is applied to control/synchronize chaos of autonomous/nonautonomous fractional-order chaotic/hyperchaotic systems in the presence of both model uncertainties and external disturbances. Two illustrative examples are presented to show the efficiency and applicability of the proposed finite-time control strategy. It is worth to notice that the proposed fractional nonsingular terminal sliding mode control approach can be applied to control a broad range of nonlinear autonomous/nonautonomous fractional-order dynamical systems in finite time.  相似文献   

3.
This paper introduces two novel fractional-order chaotic systems with cubic nonlinear resistor and investigates its adaptive sliding mode synchronization. Firstly the novel two equilibrium chaotic system with cubic nonlinear resistor (NCCNR) is derived and its dynamic properties are investigated. The fractional-order cubic nonlinear resistor system (FONCCNR) is then derived from the integer-order model and its stability and fractional-order bifurcation are discussed. Next a novel no-equilibrium chaotic cubic nonlinear resistor system (NECNR) is derived from NCCNR system. Dynamic properties of NECNR system are investigated. The fractional-order no equilibrium cubic nonlinear resistor system (FONECNR) is derived from NECNR. Stability and fractional-order bifurcation are investigated for the FONECNR system. The non-identical adaptive sliding mode synchronization of FONCCNR and FONECNR systems are achieved. Finally the proposed systems, adaptive control laws, sliding surfaces and adaptive controllers are implemented in FPGA.  相似文献   

4.
非线性振动一种稳定的模糊控制方法研究   总被引:2,自引:0,他引:2  
由于非线性振动系统的非线性本质,在于传统控制理论的线性控制器用于非线性振动控制效果不佳。本文针对非线性振动系统提出了一种模糊自适应滑模控制方案。  相似文献   

5.
This paper deals with the adaptive terminal sliding mode control for nonlinear differential inclusion systems subjected to disturbance. The upper bound of the disturbance is unknown. First, the fast terminal sliding mode surface is established and sufficient condition for fast convergence is given. Then the adaptive sliding mode controller is designed to make the state of system arrive at the sliding mode in finite time. A numerical example is provided to show the effectiveness of the proposed method.  相似文献   

6.
Adaptive control of a chaotic permanent magnet synchronous motor   总被引:1,自引:0,他引:1  
This paper proposes a simple adaptive controller design method for a chaotic permanent magnet synchronous motor (PMSM) based on the sliding mode control theory which has given an effective means to design robust controllers for nonlinear systems with bounded uncertainties. The proposed sliding mode adaptive controller does not require any information on the PMSM parameter and load torque values, thus it is insensitive to model parameter and load torque variations. Simulation results are given to verify that the proposed method can be successfully used to control a chaotic PMSM under model parameter and load torque variations.  相似文献   

7.
He  Hangfeng  Gao  Xianwen  Qi  Wenhai 《Nonlinear dynamics》2018,93(4):2433-2444
Nonlinear Dynamics - This paper investigates the problem of observer-based sliding mode control for switched positive nonlinear systems with asynchronous switching. The mode of controller is...  相似文献   

8.
This paper presents some novel discussions on fully decentralized and semi-decentralized control of fractional-order large-scale nonlinear systems with two distinctive fractional derivative dynamics. First, two decentralized fractional-order sliding mode controllers with different sliding surfaces are designed. Stability of the closed-loop systems is attained under the assumption that the uncertainties and interconnections among the subsystems are bounded, and the upper bound is known. However, determining the interconnections and uncertainties bound in a large-scale system is troublesome. Therefore in the second step, two different fuzzy systems with adaptive tuning structures are utilized to approximate the interconnections and uncertainties. Since the fuzzy system uses the adjacent subsystem variables as its own input, this strategy is known as semi-decentralized fractional-order sliding mode control. For both fully decentralized and semi-decentralized control schemes, the stability of closed-loop systems has been analyzed depend on the sliding surface dynamics by integer-order or fractional-order stability theorems. Eventually, simulation results are presented to illustrate the effectiveness of the suggested robust controllers.  相似文献   

9.
This paper considers the design of adaptive sliding mode control approach for synchronization of a class of fractional-order arbitrary dimensional hyperchaotic systems with unknown bounded disturbances. This approach is based on the principle of sliding mode control and adaptive compensation term for solving the problem of synchronization of the unknown parameters in fractional-order nonlinear systems. In particular, a novel fractional-order five dimensional hyperchaotic system has been introduced as a representative example. Furthermore, global stability and asymptotic synchronization between the outputs of master and slave systems can be achieved based on the modified Lyapunov functional and fractional stability condition. Simulation results are provided in detail to illustrate the performance of the proposed approach.  相似文献   

10.
This paper introduces a finite-time control technique for control of a class of non-autonomous fractional-order nonlinear systems in the presence of system uncertainties and external noises. It is known that finite-time control methods demonstrate better robustness and disturbance rejection properties. Moreover, finite time control methods have optimal settling time. In order to design a robust finite-time controller, a new nonsingular terminal sliding manifold is proposed. The proposed sliding mode dynamics has the property of fast convergence to zero. Afterwards, a novel fractional sliding mode control law is introduced to guarantee the occurrence of the sliding motion in finite time. The convergence times of both reaching and sliding phases are estimated. The main characteristics of the proposed fractional sliding mode technique are (1) finite-time convergence to the origin; (2) the use of only one control input; (3) robustness against system uncertainties and external noises; and (4) the ability of control of non-autonomous fractional-order systems. At the end of this paper, some computer simulations are included to highlight the applicability and efficacy of the proposed fractional control method.  相似文献   

11.
This paper presents a decoupled terminal sliding mode control (DTSMC) and a nonsingular decoupled terminal sliding mode control (NDTSMC) method for a class of fourth-order nonlinear systems. First, the nonlinear fourth-order system is decoupled into two (primary and secondary) second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients, which are computed by linear functions derived from the input–output mapping of the one-dimensional fuzzy rule bases. Then the control target of the secondary subsystem was embedded to the primary subsystem by the help of an intermediate signal. Thereafter, the DTSMC and the NDTSMC methods were utilized separately to ensure that both subsystems converge to their equilibrium points. The inverted pendulum system was used in the simulations and results were given to show the effectiveness of the proposed methods. It is seen that the proposed methods exhibit a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods in the literature.  相似文献   

12.
This paper investigates nonsingular terminal sliding mode control for a class of uncertain systems with nonlinear inputs and its application in chaos control. When some of the system states are finite-time stable, the nonlinear items that coupled with these states may come into zeros in other subsystems. This will simplify the stability analysis of the whole system greatly. Compared with the traditional finite-time stabilization design method, the introduction of the terminal sliding mode can reduce the input dimensions. Only one control input is requested to realize chaos control of the Liu system when unmatched uncertainties and input nonlinearity coexist. The parameter matrices in the TSM can be determined through the solution of LMIS. Simulation results are given to demonstrate the effectiveness of the proposed method.  相似文献   

13.
This paper presents a novel robust tracking and model following control scheme for a class of linear systems with mismatched state and input delays. The algorithm is based on discrete-time sliding mode control (SMC) and time-delay control theory. The proposed scheme ensures the stability and robustness against time delays without state transformation, and achieves the ultimate boundedness of the tracking error. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. Chattering phenomenon and reaching phase are avoided. Simulation results demonstrate the validity of the proposed scheme.  相似文献   

14.
Ren  Junchao  Sun  Jie  Fu  Jun 《Nonlinear dynamics》2021,103(1):865-882
Nonlinear Dynamics - This paper investigates the problem of finite-time event-triggered sliding mode control for one-sided Lipschitz nonlinear systems with uncertainties. The system is subjected to...  相似文献   

15.
We consider the control of mechanical systems based on sliding mode control techniques. Recently developed simplex control methods are shown to converge in a finite time when applied to nonlinear systems under bounded deterministic uncertainty. Applications are considered to the control of mechanical systems in which the control action is provided by monodirectional devices.  相似文献   

16.
Tong  Dongbing  Xu  Cong  Chen  Qiaoyu  Zhou  Wuneng  Xu  Yuhua 《Nonlinear dynamics》2020,100(2):1343-1358
Nonlinear Dynamics - This paper reports on the sliding mode control (SMC) problem for nonlinear stochastic systems with one features: time-delays are not only varied with time but also...  相似文献   

17.

In the present article, a terminal sliding mode control strategy has been proposed in order to address the synchronization problem for a class of perturbed nonlinear systems with fixed convergence time and input quantization. The proposed protocol guarantees the fixed-time convergence of the sliding manifold to the origin, which means that the convergence time of the proposed sliding manifold does not change on the variations of initial values, different from typical control methods. Here, the hysteresis quantizer, as a specific type of quantizer with nonlinear sector-bounded, is applied in order to quantize the input signal. The proposed quantized control scheme vigorously prevents the potential adverse chattering phenomenon which is experienced in the common quantization methods. The proposed controller does not need the limiting criteria related to considered parameters of quantization compared to recent control approaches. Finally, the designed controller is implemented on the perturbed Genesio–Tesi (G–T) chaotic systems to verify effectiveness and strength of the proposed method.

  相似文献   

18.

In this paper, the robust finite-time tracking problem is addressed for a square fully actuated class of nonlinear systems subjected to disturbances and uncertainties. Firstly, two applicable lemmas are derived and novel nonlinear sliding surfaces (manifolds) are defined by applying these lemmas. Secondly, by developing the nonsingular terminal sliding mode control, two different types of robust nonlinear control inputs are designed to meet and accomplish the aforementioned finite-time tracking objective. The global finite-time stability of the closed-loop nonlinear system is evaluated analytically and mathematically. The proposed control inputs are utilized to tackle and solve two interesting issues containing (a): the finite-time tracking problem of the unified chaotic system and (b): the finite-time synchronization of two non-identical hyperchaotic systems. Finally, based on MATLAB software, two numerical simulations are carried out to illustrate and demonstrate the effectiveness and performance of the proposed robust finite-time nonlinear control schemes.

  相似文献   

19.
This paper proposes a discrete-time neuro-sliding mode control (NSMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time-delay systems. It is shown that the proposed scheme guarantees the stability of closed-loop system and achieves zero-tracking error in the presence of state delays, input delays, parameter uncertainties, and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme not only assures robustness against time-delays, system uncertainties and disturbances, but also avoids chattering phenomenon and reaching phase. Moreover, the knowledge of upper bound of uncertainties is not required. Both the theoretical analysis and illustrative example demonstrate the validity of the proposed scheme.  相似文献   

20.
This paper concerns the problem of robust stabilization of autonomous and non-autonomous fractional-order chaotic systems with uncertain parameters and external noises. We propose a simple efficient fractional integral-type sliding surface with some desired stability properties. We use the fractional version of the Lyapunov theory to derive a robust sliding mode control law. The obtained control law is single input and guarantees the occurrence of the sliding motion in a given finite time. Furthermore, the proposed nonlinear control strategy is able to deal with a large class of uncertain autonomous and non-autonomous fractional-order complex systems. Also, Rigorous mathematical and analytical analyses are provided to prove the correctness and robustness of the introduced approach. At last, two illustrative examples are given to show the applicability and usefulness of the proposed fractional-order variable structure controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号