首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Exact solutions of the Einstein field equations are found for the exterior and interior gravitational field of an infinitely long circulating cylinder of light. The exterior metric is shown to contain closed timelike lines.  相似文献   

2.
The quantum speed limit (QSL) is the theoretical lower limit of the time for a quantum system to evolve from a given state to another one. Interestingly, it has been shown that non-Markovianity can be used to speed-up the dynamics and to lower the QSL time, although this behaviour is not universal. In this paper, we further carry on the investigation on the connection between QSL and non-Markovianity by looking at the effects of P- and CP-divisibility of the dynamical map to the quantum speed limit. We show that the speed-up can also be observed under P- and CP-divisible dynamics, and that the speed-up is not necessarily tied to the transition from P-divisible to non-P-divisible dynamics.  相似文献   

3.
In this article, single, and two-qubit central spin systems interacting with spin baths are considered and their dynamical properties are discussed. The cases of interacting and non-interacting spin baths are considered and the quantum speed limit (QSL) time of evolution is investigated. The impact of the size of the spin bath on the quantum speed limit for a single qubit central spin model is analyzed. The quantum correlations for (non-)interacting two central spin qubits are estimated and their dynamical behavior with that of QSL time under various conditions are compared. How QSL time could be availed to analyze the dynamics of quantum correlations is shown.  相似文献   

4.
WU Ning 《理论物理通讯》2006,45(3):452-456
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.  相似文献   

5.
Quantum Collapse, Consciousness and Superluminal Communication   总被引:1,自引:0,他引:1  
The relation between quantum collapse, consciousness and superluminal communication is analyzed. As we know, quantum collapse, if exists, can result in the appearance of quantum nonlocality, and requires the existence of a preferred Lorentz frame. This may permit the realization of quantum superluminal communication (QSC), which will no longer result in the usual causal loop in case of the existence of a preferred Lorentz frame. The possibility of the existence of QSC is further analyzed under the assumption that quantum collapse is a real process. We demonstrate that the combination of quantum collapse and the consciousness of the observer will permit the observer to distinguish nonorthogonal states in principle. This provides a possible way to realize QSC. Some implications of the existence of QSC are briefly discussed.  相似文献   

6.
Quirino Majorana (1871–1957) was an outstanding Italian experimental physicist who investigated a wide range of phenomena during his long career in Rome,Turin, and Bologna. We focus on his experiments in Turin during 1916–1921 and in Bologna during 1921–1934 to test the validity of Albert Einstein’s postulate on the constancy of the speed of light and to detect gravitational absorption. These experiments required extraordinary skill, patience, and dedication, and all of them confirmed Einstein’s postulate and Isaac Newton’s law of universal gravitation to high precision. Had they not done so, Majorana’s fame among historians and physicists no doubt would be much greater than it is today. Giorgio Dragoni is Professor of History of Physics at the University of Bologna. Giulio Maltese is a Roman member of the Italian Society for the History of Physics and Astronomy. Luisa Atti is a Bolognese member of the Association for the Teaching of Physics.  相似文献   

7.
Solving Einstein's equations precisely for strong‐field gravitational systems is essential to determining the full physics content of gravitational wave detections. Without these solutions it is not possible to infer precise values for initial and final‐state system parameters. Obtaining these solutions requires extensive numerical simulations, as Einstein's equations governing these systems are much too difficult to solve analytically. These difficulties arise principally from the curved, non‐linear nature of spacetime in general relativity. Developing the numerical capabilities needed to produce reliable, efficient calculations has required a Herculean 50‐year effort involving hundreds of researchers using sophisticated physical insight, algorithm development, computational technique, and computers that are a billion times more capable than they were in 1964 when computations were first attempted. The purpose of this review is to give an accessible overview for non‐experts of the major developments that have made such dramatic progress possible.  相似文献   

8.
Starting from an interpretation of the classical-quantum correspondence, we derive the Dirac equation by factorizing the algebraic relation satisfied by the classical Hamiltonian, before applying the correspondence. This derivation applies in the same form to a free particle, to one in an electromagnetic field, and to one subjected to geodesic motion in a static metric, and leads to the same, usual form of the Dirac equation—in special coordinates. To use the equation in the static-gravitational case, we need to rewrite it in more general coordinates. This can be done only if the usual, spinor transformation of the wave function is replaced by the 4-vector transformation. We show that the latter also makes the flat-spacetime Dirac equation Lorentz-covariant, although the Dirac matrices are not invariant. Because the equation itself is left unchanged in the flat case, the 4-vector transformation does not alter the main physical consequences of that equation in that case. However, the equation derived in the static-gravitational case is not equivalent to the standard (Fock-Weyl) gravitational extension of the Dirac equation.  相似文献   

9.
A spacetime interval connecting two neighbouring points can be measured in different unit systems.For instance,it can be measured in atomic unit defined in terms of fundamental constants existing in quantum theories.It is also possible to use a gravitational unit which is defined by the use of properties of macroscopic objects.These two unit systems are usually regarded as indistinguishable up to a constant conversion factor.Here we consider the possibility that these two units are related by an epoch-dependent conversion factor.This is a dynamical changes of units.Regarding a conformal transformation as a local unit transformation,we use a gravitational model in which the gravitational and the matter sectors are given in different conformal frames(or unit systems).It is relevant to the cosmological constant problem,namely the huge discrepancy between the estimated and the observational values of the cosmological constant in particle physics and cosmology,respectively.We argue that the problem arises when one ignores evolution of the conversion factor relating the two units during expansion of the Universe.Connection of the model with violation of equivalence principle and possible variation of fundamental constants are also discussed.  相似文献   

10.
We describe our explicit Lorentz-invariant solution of the Einstein and null geodesic equations for the deflection experiment of 2002 September 8 when a massive moving body, Jupiter, passed within 3.7’ of a line-of-sight to a distant quasar. We develop a general relativistic framework which shows that our measurement of the retarded position of a moving light-ray deflecting body (Jupiter) by making use of the gravitational time delay of quasar’s radio wave is equivalent to comparison of the relativistic laws of the Lorentz transformation for gravity and light. Because, according to Einstein, the Lorentz transformation of gravity field variables must depend on a fundamental speed c, its measurement through the retarded position of Jupiter in the gravitational time delay allows us to study the causal nature of gravity and to set an upper limit on the speed of propagation of gravity in the near zone of the solar system as contrasted to the speed of the radio waves. In particular, the v/c term beyond of the standard Einstein’s deflection, which we measured to 20% accuracy, is associated with the aberration of the null direction of the gravity force (“aberration of gravity”) caused by the Lorentz transformation of the Christoffel symbols from the static frame of Jupiter to the moving frame of observer. General relativistic formulation of the experiment identifies the aberration of gravity with the retardation of gravity because the speed of gravitational waves in Einstein’s theory is equal to the speed of propagation of the gravity force. We discuss the misconceptions which have inhibited the acceptance of this interpretation of the experiment. We also comment on other interpretations of this experiment by Asada, Will, Samuel, Pascual–Sánchez, and Carlip and show that their “speed of light” interpretations confuse the Lorentz transformation for gravity with that for light, and the fundamental speed of gravity with the physical speed of light from the quasar. For this reason, the “speed of light” interpretations are not entirely consistent with a retarded Liénard–Wiechert solution of the Einstein equations, and do not properly incorporate how the phase of the radio waves from the quasar is perturbed by the retarded gravitational field of Jupiter. Although all of the formulations predict the same deflection to the order of v/c, our formulation shows that the underlying cause of this deflection term is associated with the aberration of gravity and not of light, and that the interpretations predict different deflections at higher orders of v/c beyond the Shapiro delay, thus, making their measurement highly desirable for deeper testing of general relativity in future astrometric experiments like Gaia, SIM, and SKA.  相似文献   

11.
We consider a Markovian approximation, of weak coupling type, to an open system perturbation involving emission, absorption and scattering by reservoir quanta. The result is the general form for a quantum stochastic flow driven by creation, annihilation and gauge processes. A weak matrix limit is established for the convergence of the interaction-picture unitary to a unitary, adapted quantum stochastic process and of the Heisenberg dynamics to the corresponding quantum stochastic flow: the convergence strategy is similar to the quantum functional central limits introduced by Accardi, Frigerio and Lu [1]. The principal terms in the Dyson series expansions are identified and re-summed after the limit to obtain explicit quantum stochastic differential equations with renormalized coefficients. An extension of the Pulé inequalities [2] allows uniform estimates for the Dyson series expansion for both the unitary operator and the Heisenberg evolution to be obtained.  相似文献   

12.
13.
高芬  周泽兵 《物理》2010,39(01):38-43
等效原理地面实验检验已经达到了10-13,为了进一步提高实验精度,寻找新的相互作用和检验引力理论,人们提出了一系列更高精度等效原理检验的卫星计划.文章主要概述了等效原理空间检验的原理、发展历史和发展现状,并对进一步空间等效原理检验进行了简要展望.  相似文献   

14.
等效原理地面实验检验已经达到了10-13,为了进一步提高实验精度,寻找新的相互作用和检验引力理论,人们提出了一系列更高精度等效原理检验的卫星计划.文章主要概述了等效原理空间检验的原理、发展历史和发展现状,并对进一步空间等效原理检验进行了简要展望.  相似文献   

15.
The quantum measurement problem and various unsuccessful attempts to resolve it are reviewed. A suggestion by Diosi and Penrose for the half-life of the quantum superposition of two Newtonian gravitational fields is generalized to an arbitrary quantum superposition of relativistic, but weak, gravitational fields. The nature of the collapse process of the wave function is examined.  相似文献   

16.
17.
In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculate the possible curvature excitation (order k^4) of gravitational field, which is given by the first term of quantum Wilson loop (w) through two-point Green's function of the connection. At the same time using the tree diagram propagators of gravitons, the lowest order (k^4) correction to (w) is also calculated through the graviton self-energy in the term. Under the accuracy condition up to order k^4, we have obtained a complete expression of the excitation contributed from the leading term (w^(2))of (w).  相似文献   

18.
If (V) is a net of local von Neumann algebras satisfying standard axioms of algebraic relativistic quantum field theory and V 1 and V 2 are spacelike separated spacetime regions, then the system ( (V 1 ), (V 2 ), ) is said to satisfy the Weak Reichenbach's Common Cause Principle iff for every pair of projections A (V 1 ), B (V 2 ) correlated in the normal state there exists a projection C belonging to a von Neumann algebra associated with a spacetime region V contained in the union of the backward light cones of V 1 and V 2 and disjoint from both V 1 and V 2 , a projection having the properties of a Reichenbachian common cause of the correlation between A and B. It is shown that if the net has the local primitive causality property then every local system ( (V 1 ), (V 2 ), ) with a locally normal and locally faithful state and suitable bounded V 1 and V 2 satisfies the Weak Reichenbach's Common Cause Principle.  相似文献   

19.
Herein we present a whole new approach that leads to the end results of the general theory of relativity via just the law of conservation of energy (broadened to embody the mass and energy equivalence of the special theory of relativity) and quantum mechanics. We start with the following postulate. Postulate: The rest mass of an object bound to a celestial body amounts less than its rest mass measured in empty space, and this, as much as its binding energy vis-á-vis the gravitational field of concern.  相似文献   

20.
It has been claimed in the literature that impossibility of faster-than-light quantum communication has an origin of indistinguishability of ensembles with the same density matrix. We show that the two concepts are not related. We argue that even with an ideal single-atom-precision measurement, it is generally impossible to produce two ensembles with exactly the same density matrix; or to produce ensembles with the same density matrix, classical communication is necessary. Hence the impossibility of faster-than-light communication does not imply the indistinguishability of ensembles with the same density matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号