首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A switchable multi-wavelength erbium-doped fiber (EDF) ring laser based on cascaded polarization maintaining fiber Bragg gratings (PMFBGs) in a Sagnac loop interferometer as the wavelength-selective filter at room temperature is proposed. Due to the polarization hole burning (PHB) enhanced by the PMFBGs, stable single-, dual-, three- and four-wavelength lasing operations can be obtained. The laser can be switched among the stable single-, dual-, three- and four-wavelength lasing operations by adjusting the polarization controllers (PCs). The optical signal-to-noise ratio (OSNR) is over 50 dB.  相似文献   

2.
A simple but novel concept of switchable dual-wavelength erbium-doped fiber ring laser is proposed and experimentally demonstrated. It is based on a Sagnac loop mirror incorporating a high birefringence few-mode fiber and polarization controller (PC). Since its transmission properties depend on the PC state, the proposed fiber ring laser can operate in the random combination of two wavelengths by adjusting only the PC settings. The potential lasing lines are determined by simultaneous occurrence of the Sagnac and intermodal interferences in the Sagnac loop mirror. All lasing emissions have the optical signal to noise extinction ratio higher than 45 dB and their power fluctuations lower than 0.5 dB.  相似文献   

3.
Without the need of any other additional filtering device, a triple-wavelength switchable erbium-doped fiber ring laser based on Sagnac loop mirror incorporating a piece of few-mode high birefringence fiber is newly proposed and experimentally demonstrated. Three potential lasing wavelengths at about 2.0 nm interval with the side mode suppression ratio higher than 40 dB can be switched mainly by adjusting a polarization controller next to the few-mode high birefringence fiber in the Sagnac loop. In addition to the stable single-line lasing operation, simultaneous dual- and triple-line oscillations are also highly stable at room temperature with suppressing the intrinsic homogeneous gain broadening of the erbium-doped fiber.  相似文献   

4.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

5.
J. E. Im  B. K. Kim  Y. Chung 《Laser Physics》2010,20(10):1918-1922
Multi-wavelength fiber laser using semiconductor optical amplifier (SOA) and Sagnac loop mirror (SLM) incorporating a newly designed high-birefringence photonic crystal fiber (HB-PCF) is experimentally demonstrated. The modal birefringence of the fabricated HB-PCF is estimated to be 1.1 × 10−3. Mainly, by adjusting a polarization controller in the fiber ring laser, the proposed fiber laser can operate at six lasing wavelengths with 2.7 nm intervals, the signal-to-noise ratio (SNR) of around 30 dB. The output power stability is 0.8 dB. In addition, we obtained near-perfect temperature independence in our multi-wavelength fiber laser system. The temperature dependence of the SLM is around 3 pm/°C.  相似文献   

6.
报道了一种基于多波长类噪声脉冲的被动锁模掺铒光纤激光器。采用980 nm半导体激光器作为泵浦源,2.5 m长的掺铒光纤作为增益介质。锁模机制为非线性放大环形镜(NALM)。通过自相关迹证明输出脉冲为类噪声脉冲。该类噪声脉冲的光谱3 dB带宽可达17.2 nm,边模抑制比为47.7 dB,重复频率为5.434 MHz,单脉冲能量为7.9 nJ。为了实现平坦的多波长输出,在NALM结构中加入Sagnac环干涉仪,获得了最大波长数为5的平坦多波长类噪声脉冲,平坦度为1.995。  相似文献   

7.
We experimentally demonstrate a wavelength-tunable erbium-doped fiber laser that is composed of a ring cavity and a single-mode fiber Sagnac interferometer in a new and simple arrangement. We find that the fiber laser output wavelength is tunable by adjusting the filter effect of the Sagnac fiber loop through a fiber polarization controller set there. The quasi-single-wavelength continuously tunable laser outputs could be achieved within some wavelength range. The multi-wavelength laser outputs could also be observed under some appropriate settings of the polarization controller. A theoretical demonstration of the wavelength tunability about the transmission-type Sagnac loop filter has also been achieved using the Jones calculus theory.  相似文献   

8.
A dual-pass Mach–Zehnder interferometer filter using a section of twin-core fiber (TCF) loop mirror is proposed. The filter is theoretically and experimentally studied for various interferometer arm difference when TCF length is constant. Theoretical results are validated by the experimental demonstration and in good agreement with the experimental results. And then, by using the filter in a ring fiber laser, a stable and switchable dual-wavelength lasing is obtained experimentally. The 3-dB bandwidth and the SMSR of the output laser are 0.015 nm and higher than 62.4 dB, respectively. The peak power fluctuation and wavelength shift are also monitored to be less than 0.04 dB and 0.02 nm over an hour at room temperature. Furthermore, the output laser can be switched between single and dual wavelength by carefully adjusting the PCs. The experimental results show that the filter can suppress mode competition effectively, improve the SMSR availably, and enhance the stability of the output lasing.  相似文献   

9.
A multiwavelength Ytterbium-doped fiber ring laser operating at 1030 nm region is demonstrated using a Sagnac loop mirror and a Mach-Zehnder interferometer. We report the Performance comparisons of multi-wavelength oscillations in Yb3+ doped fiber lasers (YDFL) with typical commercial ytterbium doped silica fibers. By adjusting the polarization controller (PC), a widely tunable laser range of 22 nm from 1030 nm to 1050 nm is obtained. The Mach-Zehnder interferometer (MZI) design has exhibited simplicity in the operation for controlling the smallest wavelength spacing compared to Sagnac loop mirror method. In our observations, the smallest achieved stable wavelength spacing in Sagnac loop mirror setup and MZI setup were 2.1 nm and 0.7 nm, respectively. In case of nine-wavelength operation with a MZI setup, the stability, Full Width at Half Maximum (FWHM) and side mode suppression ratio (SMSR) of laser lines are not affected by increasing pump power, While for above four wavelength operation, the laser stability with Sagnac loop mirror becomes worse specially for higher input pump power and the power fluctuation among the wave-lengths would be also slightly larger.  相似文献   

10.
48-波长线形腔多波长掺铒光纤激光器   总被引:6,自引:5,他引:1  
采用两个光纤环镜作为腔镜构成线形腔可调谐多波长掺铒光纤激光器.将铒光纤浸入77 K的液氮中,选择可调谐光纤环镜作为输出腔镜,利用Mach-Zehnder干涉仪的滤波特性和输出端光纤环镜反射率的宽带可调特性,获得了波长间隔~0.4 nm、最大波长数目48个的多波长激光的稳定输出,同时实现了在1525~1555 nm范围内,多波长激光运转区域的灵活调节.  相似文献   

11.
匡芬  叶志清 《光子学报》2014,41(12):1460-1463
波长可开关光纤激光器可以选择多波长光纤激光器中的一个或多个波长输出,支持光网络中多个波长的动态分配,适应现代光纤通信系统信道数越来越多的波分复用和密集波分复用的发展方向.本文提出并实现了一种自激发多波长可开关掺铒光纤激光器.该激光器通过一个980 nm泵浦进行抽运,使用掺铒光纤作为增益介质,产生1 550 nm光谱,并通过一个环形结构返回,从而实现自激发的过程,降低了实验成本.实验使用一个含有两段保偏光纤的Sagnac环作为滤波器.通过调整Sagnac环形滤波器内偏振控制器的角度,改变Sagnac环形滤波器的腔内增益,可以让光纤光栅反射出来的波长选择性通过,从而实现波长的开关功能.实验证明,通过调整Sagnac滤波器的腔内增益而让多波长选择性通过,是一种有效的实现波长可开关功能的方法.  相似文献   

12.
A stable and uniform multi-wavelength fiber laser based on the hybrid gain of a dispersion compensating fiber as the Raman gain medium and an erbium-doped fiber (EDF) is introduced. The gain competition effects in the fiber Raman amplification (FRA) and EDF amplification are analyzed and compared experimentaUy. The FRA gain mechanism can suppress the gain competition effectively and make the present multi-wavelength laser stable at room temperature. The hybrid gain medium can also increase the lasing bandwidth compared with a pure EDF laser, and improve the power conversion efficiency compared with a pure fiber Raman laser.  相似文献   

13.
A tunable and switchable multi-wavelength Erbium-doped photonic crystal fiber ring laser incorporating a length of single-mode highly nonlinear photonic crystal fiber is proposed and demonstrated experimentally. Stable dual-wavelength and triple-wavelength operations at room temperature are achieved by employing the highly nonlinear photonic crystal fiber to induce four-wave mixing effect and a polarization controller to vary the polarization states of propagation lights in the laser cavity. The laser cavity is free from any wavelength selection components. The laser obtains maximal 30 dB signal-to-noise ratio and the peak power fluctuations of lasing lines are less than 1.39 dB.  相似文献   

14.
Lim DS  Lee HK  Kim KH  Kang SB  Ahn JT  Jeon MY 《Optics letters》1998,23(21):1671-1673
We have demonstrated a novel multiwavelength lasing scheme in which a Brillouin erbium-fiber laser with a Sagnac loop mirror and a metal-coated planar mirror were used. The Sagnac loop permitted the simultaneous presence of a stimulated Brillouin scattering (SBS) pump and Stokes lines within the loop and thus generated high-order Stokes and anti-Stokes waves through a four-wave mixing (FWM) process. A total of 34 lines of Stokes and anti-Stokes waves with 0.08-nm line spacing was generated through the SBS and FWM processes with 1.5-mW SBS pump power at 1561 nm and 80-mW erbium-doped-fiber pump power.  相似文献   

15.
G. Sun  Y. Zhou  L. Cui  Y. Chung 《Laser Physics》2011,21(11):1914-1918
A multiwavelength switchable erbium-doped fiber laser with linear cavity is proposed and experimentally demonstrated. It is based on a fiber loop mirror incorporating a piece of high birefringence few-mode fiber and polarization controller. Due to dependence of its reflection properties on the polarization controllers, the fiber laser can operate in the random combination of three wavelengths by only adjusting the polarization controllers in the linear cavity. The wavelengths involved in the switching operation are determined by the merged Sagnac and intermodal interferences elicited in the fiber loop mirror. The optical signal to noise extinction ratio of every oscillation line is higher than 40 dB and power fluctuation less than 0.5 dB.  相似文献   

16.
We experimentally demonstrate a fine adjustment of cavity loss by Sagnac loop for a dual wave-length generation. The single or dual wavelengths are obtained by controlling the losses on both cavities through a fiber optical loop mirror (FOLM). Wavelength separation on the dual laser is 0.98 nm. The dual or single wavelength is obtained by changes in temperature in the order of 10−1°C around the maximum in the FOLM. Also, we investigate energy fluctuations on signal level saturation effect in the cavity through different pumping power that act on the EDF, where we note that from the 60-mW pumping begins to generate dual-wavelength and 80-mW stabilizes.  相似文献   

17.
A photonics true-time-delay system for phased array beamforming using a chirped grating-based time-delay element and a novel multiwavelength erbium-doped fiber ring laser source employing a Sagnac filtering mirror is proposed. The Sagnac filtering mirror consists of a polarization maintaining directional coupler and two pieces of polarization maintaining fibers. The lasing wavelength and number are determined by properly adjusting the polarization controller within the unidirectional ring cavity and are very stable. A chirped-grating-based true-time-delay system using the proposed laser source is constructed and demonstrated experimentally.  相似文献   

18.
A switchable multi-wavelength fiber ring laser is proposed and experimentally demonstrated with a novel side-leakage photonic crystal fiber (SLPCF) based filter incorporated into the ring cavity at room temperature. Stable multi-wavelength laser operations can be achieved due to the spatial mode beating, polarization hole burning and spectral hole burning effects. By adjusting the polarization controller appropriately, the laser can be switched among the single-, dual- and triple-wavelength lasing oscillations whose signal-to-noise ratio is up to 50 dB. In addition, the lasing wavelength can be also tuned and switched by applying the strain to the filter.  相似文献   

19.
Z. C. Luo  A. P. Luo  W. C. Xu 《Laser Physics》2009,19(11):2120-2123
A waveband switchable multi-wavelength erbium-doped fiber ring laser based on wavelength-dependent polarization rotation mechanism and birefringence-based in-line comb filter is proposed and demonstrated. The two lasing wavebands, around 1530 and 1560 nm region, can be efficiently switched by simply rotating the polarization controllers (PCs). The channel spacing is 0.4 nm which was determined by the length of polarization maintain fiber (PMF) used in the experiment. The experimental results show that the waveband switchable is an intrinsic feature of multi-wavelength fiber ring lasers by incorporating a passive polarizer in the laser cavity.  相似文献   

20.
一种新型自激发布里渊掺铒光纤激光器   总被引:4,自引:1,他引:4  
汪平河  廖弦  饶云江 《光学学报》2007,27(12):2200-2204
利用级联的受激布里渊效应,自激发布里渊掺铒光纤激光器可以实现常温下的多波长激光输出。通过在自激发掺铒光纤激光器中引入一个高双折射萨尼亚克(Sagnac)环形滤波器,调节萨尼亚克环形滤波器的偏振控制器(PC),实现了可调谐多波长输出,同时在实验中观测到双布里渊多波长带的现象。研究了这种光纤激光器中萨尼亚克环形滤波器的带宽和980 nm抽运光功率对输出波长数的影响,在萨尼亚克环形滤波器的带宽为83.3 nm以及980 nm抽运光功率为260 mW时,得到了52个间隔为0.088 nm的多波长激光输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号