首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
应用拓展双曲函数方法求KP方程的新精确解   总被引:1,自引:0,他引:1  
本文引入行波解,并应用拓展双曲函数方法,求得(2+1)维Kadomtsev-Petviashvili(KP)方程的精确解.通过应用拓展双曲函数方法,可以得到关于方程的一类有理函数形式的孤立波,行波以及三角函数周期波的精确解,并且此方法适用于求解一大类非线性偏微分进化方程.  相似文献   

2.
In this paper, by using the improved Riccati equations method, we obtain several types of exact traveling wave solutions of breaking soliton equations and Whitham-Broer-Kaup equations. These explicit exact solutions contain solitary wave solutions, periodic wave solutions and the combined formal solitary wave solutions. The method employed here can also be applied to solve more nonlinear evolution equations.  相似文献   

3.
4.
In this paper, a sine-cosine method is used to construct many periodic and solitary wave solutions to two nonlinear evolution systems: the coupled quadratic nonlinear equations and the coupled Klein-Gordon-Schrödinger equations. Under different parameter conditions, explicit formulas for some new periodic and solitary wave solutions are successfully obtained. The proposed solutions are found to be important for the explanation of some practical physical problems.  相似文献   

5.
Problems that are modeled by nonlinear evolution equations occur in many areas of applied sciences. In the present study, we deal with the negative order KdV equation and the generalized Zakharov system and derive some further results using the so‐called first integral method. By means of the established first integrals, some exact traveling wave solutions are obtained in a concise manner. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
A new rational auxiliary equation method for obtaining exact traveling wave solutions of constant coefficient nonlinear partial differential equations of evolution is proposed. Its effectiveness is evinced by obtaining exact solutions of a generalized Zakharov system, some of which are new. It is shown that the G/G and the generalized projective Ricatti expansion methods are special cases of the auxiliary equation method. Further, due the solutions obtained, four other new and practicable rational methods are deduced.  相似文献   

8.
By using an extension of the homogeneous balance method and Maple, the Bäcklund transformations for the Sharma-Tasso-Olver equation are derived. The connections between the Sharma-Tasso-Olver equation and some linear partial differential equations are found. With the aid of the transformations given here and the computer program Maple 12, abundant exact explicit special solutions to the Sharma-Tasso-Olver equation are constructed. In addition to all known solutions re-deriving in a systematic way, several entirely new and more general exact explicit solitary wave solutions can also be obtained. These solutions include (a) the algebraic solitary wave solution of rational function, (b) single-soliton solutions, (c) double-soliton solutions, (d) N-soliton solutions, (e) singular traveling solutions, (f) the periodic wave solutions of trigonometric function type, and (g) many non-traveling solutions. By using the Airy’s function and the Bäcklund transformations obtained here, the exact explicit solution of the initial value problem for the STO equation is presented. The variety of the structure of the solutions for the Sharma-Tasso-Olver equation is illustrated.  相似文献   

9.
The hyperbolic function method for nonlinear wave equations is presented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Gr?bner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.  相似文献   

10.
The extended tanh method with a computerized symbolic computation is used for constructing the traveling wave solutions of coupled nonlinear equations arising in physics. The obtained solutions include solitons, kinks and plane periodic solutions. The applied method will be used to solve the generalized coupled Hirota Satsuma KdV equation.  相似文献   

11.
构造非线性差分方程精确解的一种方法   总被引:1,自引:0,他引:1  
在齐次平衡法、试探函数法的基础上,给出指数函数所组成的两种试探函数法,并借助符号计算系统Mathematica构造了Hybrid-Lattice系统、mKdV差分微分方程、Ablowitz-Ladik.Lattice6系统等非线性离散系统的新的精确孤波解.  相似文献   

12.
An extended mapping method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for nonlinear evolution equations arising in physics, namely, generalized Zakharov Kuznetsov equation with variable coefficients. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations with variable coefficients arising in mathematical physics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

13.
Recently, we have presented a sine-Gordon expansion method to construct new exact solutions of a wide of continuous nonlinear evolution equations. In this paper we further develop the method to be the discrete sine-Gordon expansion method in nonlinear differential-difference equations, in particular, discrete soliton equations. We choose the modified Volterra lattice and Volterra lattice equation to illustrate the new method such as many types of new exact solutions are obtained. Moreover some figures display the profiles of the obtained solutions. Our method can be also applied to other discrete soliton equations.  相似文献   

14.
二维色散长波方程组的精确解   总被引:2,自引:0,他引:2  
利用齐次平衡法给出了二维色散长波方程组的定态解、孤立波解与非孤立波解等几种显式精确解。这个方法也可用来寻找其它非线性发展方程的不同类型的精确解。  相似文献   

15.
With the aid of symbolic computation, auxiliary equation method is introduced to investigate modified forms of Camassa-Holm and Degasperis-Procesi equations. A series of new exact traveling wave solutions, including smooth solitary wave solution, peakons, singular solution, periodic wave solution, Jacobi elliptic solution, are obtained in general form. These new exact solutions will enrich previous results and help us further understand the physical structures of these two nonlinear equations.  相似文献   

16.
In this paper, new exact solutions with two arbitrary functions of the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations are obtained by means of the Riccati equation and its generalized solitary wave solutions constructed by the Exp-function method. It is shown that the Exp-function method provides us with a straightforward and important mathematical tool for solving nonlinear evolution equations in mathematical physics.  相似文献   

17.
The ‘tanh-coth expansion method’ for finding solitary travelling-wave solutions to nonlinear evolution equations has been used extensively in the literature. It is a natural extension to the basic tanh-function expansion method which was developed in the 1990s. It usually delivers three types of solution, namely a tanh-function expansion, a coth-function expansion, and a tanh-coth expansion. It is known that, for every tanh-function expansion solution, there is a corresponding coth-function expansion solution. It is shown that there is a tanh-coth expansion solution that is merely a disguised version of the coth solution. In many papers, such tanh-coth solutions are erroneously claimed to be ‘new’. However, other tanh-coth solutions may be delivered that are genuinely new in the sense that they would not be delivered via the basic tanh-function method. Similar remarks apply to tan, cot and tan-cot expansion solutions.  相似文献   

18.
运用广义条件对称方法对径向对称的多孔介质方程进行了对称约化.确定了允许二阶广义条件对称的方程形式,并给出了方程相应的不变解.  相似文献   

19.
In this paper, an extended simplest equation method is proposed to seek exact travelling wave solutions of nonlinear evolution equations. As applications, many new exact travelling wave solutions for several forms of the fifth-order KdV equation are obtained by using our method. The forms include the Lax, Sawada-Kotera, Sawada-Kotera-Parker-Dye, Caudrey-Dodd-Gibbon, Kaup-Kupershmidt, Kaup-Kupershmidt-Parker-Dye, and the Ito forms.  相似文献   

20.
In this paper, the truncated Painlevé analysis and the consistent tanh expansion method are developed for the modified Boussinesq system, and new exact solutions such as the single‐soliton, the two‐soliton, the rational solutions, and the explicit interaction solutions among a soliton and the cnoidal periodic waves are obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号