首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y2-xGdxO3:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed laser deposition. Films grown under different deposition conditions have been characterized using microstructural and luminescence measurements. The crystallinity, surface morphology and photoluminescence (PL) of the films are highly dependent on the amount of Gd present. The photoluminescence (PL) brightness data obtained from Y2-xGdxO3:Eu3+ films grown under optimized conditions have indicated that Al2O3(0001) is one of the most promising substrates for the growth of high-quality Y2-xGdxO3:Eu3+ thin-film red phosphors. In particular, the incorporation of Gd into the Y2O3 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y1.35Gd0.60Eu0.05O3, whose brightness was increased by a factor of 3.1 in comparison with that of Y2O3:Eu3+ films. This phosphor may be promising for application in flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

2.
Gd-substituted Y1-xGdxVO4:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed-laser deposition. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity, surface morphology, and photoluminescence (PL) of the films are highly dependent on the amount of Gd. The photoluminescence (PL) brightness data obtained from Y1-xGdxVO4:Eu3+ films grown under optimized conditions have indicated that the PL brightness is more dependent on the surface roughness than the crystallinity of the films. In particular, the incorporation of Gd into the YVO4 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y0.57Gd0.40Eu0.03VO4 thin film whose brightness was increased by a factor of 2.5 and 1.9 in comparison with that of YVO4:Eu3+ and GdVO4:Eu3+ films, respectively. This phosphor have application to flat panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

3.
Spectra of Eu3+ in various dielectric matrices (Gd2O3:Eu3+, Y2O3:Eu3+, Eu2O3, and mSiO2/Gd2O3:Eu3+ mesoporous particles) are studied by local cathodoluminescence. The results allowed identification of the local environment of Er3+ ions in amorphous samples and detection of the monoclinic Eu2O3 phase impurity in samples with yttrium oxide. The cathodoluminescence spectra of chemically pure Y2O3, Eu2O3, and Gd2O3 are recorded. Conclusions about the structural features of the materials are made and confirmed by other methods (XRD and EPMA).  相似文献   

4.
Green-emitting Y2SiO5:Tb phosphor particles with fine size, spherical shape, filled morphology, high crystallinity, and good brightness were synthesized by a spray pyrolysis process. The effect of silicon precursor type on the morphology, crystal structure, crystallinity, and photoluminescence efficiency of Y2SiO5:Tb phosphor particles was investigated. The particles prepared from an artificial colloidal solution obtained by dispersing fumed silica particles had a pure monoclinic X2 crystalline phase, which is more appropriate for application to displays, after post-treatment at 1300 °C. On the other hand, the particles prepared from 100% tetraethyl orthosilicate (TEOS) reagent had an X2 phase and small amounts of X1 and impurity phases such as Y2Si2O7 and Y4.67Si3O13 due to the phase-segregation characteristics of the TEOS precursor. The photoluminescence characteristics of Y2SiO5:Tb phosphor particles were strongly affected by the silicon source used. The photoluminescence intensities increased with the fumed silica/TEOS ratio. The particles prepared from 100% fumed silica showed the maximum photoluminescence intensity, which is 22% higher than that of particles prepared from 100% TEOS. PACS 81.20.Rg; 78.55.Hx; 78.40.Ha; 81.05.Hd; 81.40.Tv  相似文献   

5.
Y2O3:Eu phosphor particles were prepared by large-scale spray pyrolysis. The morphological control of Y2O3:Eu particles in spray pyrolysis was attempted by adding polymeric precursors to the spray solution. The effect of composition and amount of polymeric precursors on the morphology, crystallinity and photoluminescence characteristics of Y2O3:Eu particles was investigated. Particles prepared from a solution containing polyethylene glycol (PEG) with an average molecular weight of 200 had a hollow structure, while those prepared from solutions containing adequate amounts of citric acid (CA) and PEG had a spherical shape, filled morphology and clean surfaces after post-treatment at high temperature. Y2O3:Eu particles prepared from an aqueous solution with no polymeric precursors had a hollow structure and rough surfaces after post-treatment. The phosphor particles prepared from solutions with inadequate amounts of CA and/or PEG also had hollow and/or fragmented structures. The particles prepared from the solution containing 0.3 M  CA and 0.3 M  PEG had the highest photoluminescence emission intensity, which was 56% higher than that of the particles prepared from aqueous solution without polymeric precursors. Received: 22 March 2002 / Accepted: 26 March 2002 / Published online: 5 July 2002 RID="*" ID="*"Corresponding author. Fax: +82-42/861-4245, E-mail: yckang@pado.krict.re.kr  相似文献   

6.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

7.
Epitaxial films of composition (Gd,Nd)3Ga5O12 or (Gd,Y,Nd)3Ga5O12 with a neodymium content varying from 0.3 to 15 at. % are grown by liquid-phase epitaxy from a supercooled PbO-B2O3-based solution melt on Gd3Ga5O12(111) substrates. The optical absorption spectra of the epitaxial films grown are measured in the wavelength range 0.2–1.0 µm. The results of interpreting the absorption bands observed in the spectra are used to construct the energy level diagrams of Nd3+ and Gd3+ ions in the matrices of the epitaxial films.  相似文献   

8.
In this paper we study the possibility of using the synthesized nanopowder samples of Gd2Zr2O7:Eu3+ for temperature measurements by analyzing the temperature effects on its photoluminescence. The nanopowder was prepared by solution combustion synthesis method. The photoluminescence spectra used for analysis of Gd2Zr2O7:Eu3+ nano phosphor optical emission temperature dependence were acquired using continuous laser diode excitation at 405 nm. The temperature dependencies of line emission intensities of transitions from 5D0 and 5D1 energy levels to the ground state were analyzed. Based on this analysis we use the two lines intensity ratio method for temperature sensing. Our results show that the synthesized material can be efficiently used as thermographic phosphor up to 650 K.  相似文献   

9.
Specific features of the magnetic properties and magnetic dynamics of isolated phase separation domains in GdMn2O5 and Gd0.8Ce0.2Mn2O5 have been investigated. These domains represent 1D superlattices consisting of dielectric and conducting layers with the ferromagnetic orientation of their spins. A set of ferromagnetic resonances of separate superlattice layers has been studied. The properties of the 1D superlattices in GdMn2O5 and Gd0.8Ce0.2Mn2O5 are compared with the properties of the previously investigated RMn2O5 (R = Eu, Tb, Er, and Bi) series. The similarity of the properties for all the RMn2O5 compounds with different R ion types is established. Based on the concepts of the magnetic dynamics of ferromagnetic multilayers and properties of semiconductor superlattices, a 1D model of the superlattices in RMn2O5 is built.  相似文献   

10.
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)3 precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.  相似文献   

11.
Advanced Li-air battery architecture demands a high Li+ conductive solid electrolyte membrane that is electrochemically stable against metallic lithium and aqueous electrolyte. In this work, an investigation has been carried out on the microstructure, Li+ conduction behaviour and structural stability of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) prepared by conventional solid-state reaction technique. The phase analysis of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) sintered at 1200 °C by powder X-ray diffraction (PXRD) and Raman confirms the formation of high Li+ conductive cubic phase (\( Ia\overline{3}d \)) lithium garnets. Among the investigated lithium garnets, Li7La2.75Y0.25Zr2O12 sintered at 1200 °C exhibits a maximized room temperature total (bulk + grain boundary) Li+ conductivity of 3.21 × 10?4 S cm?1 along with improved relative density of 96 %. The preliminary investigation on the structural stability of Li7La2.75Y0.25Zr2O12 in the solutions of 1 M LiCl, dist. H2O and 1 M LiOH at 30 °C/50 °C indicates that the Li7La2.75Y0.25Zr2O12 is relatively stable against 1 M LiCl and dist. H2O. Further electrochemical investigation is essential for practical application of Li7La2.75Y0.25Zr2O12 as protective solid electrolyte membrane in aqueous Li-air battery.  相似文献   

12.
The dynamics of magnetoelectric RMn2O5 crystals (R=Eu and Gd) was studied in the frequency and temperature ranges 20–300 GHz and 5–50 K, respectively. The crystals possessed magnetic and ferroelectric long-range order and had close transition temperatures, TN, C?36 and 30 K for R=Eu and Gd, respectively. Mixed magneto-lattice excitations were observed in GdMn2O5; the excitations were most intense near the transition temperature T?30 K at frequencies close to the antiferromagnetic resonance frequencies of the Mn subsystem. Along with the antiferromagnetic resonance of the Mn subsystem, the ferromagnetic resonance of the Gd subsystem was observed in GdMn2O5 in an external magnetic field. No such dynamics was characteristic of EuMn2O5.  相似文献   

13.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

14.
Nanoscale yttrium–barium–copper oxide (Y2BaCuO5, Y211) particles were synthesized using the emulsion method and the solution method. The basic water-in-oil (w/o) emulsion system consisted of n-octane (continuous oil phase), cetyltrimethylammonium bromide (cationic surfactant), butanol (cosurfactant) and water. The composition of the emulsion system was varied and characterized by measuring the conductivity of the solutions and droplet size. The droplet size of emulsion was determined by using the dynamic light scattering method. The water content, cosurfactant content, and surfactant/n-octane ratio affected the droplet size which was in the range of 3–8 nm, and hence the w/o emulsion system was referred to as a nano-emulsion system. A model was used to verify the droplet size. The influence of salt (Y2(NO3)3) content on the droplet size was investigated and the addition of salt reduced the droplet size. The effects of reaction time and temperature on the Y211 particle sizes were also investigated. The particles were characterized using the TEM, SEM, and XRD. Nanoparticles produced by the nano-emulsion method were calcined at 850°C to form the Y211 phase as compared to solid state processing temperature of 1050°C. Based on the TEM analysis, the average diameter of the Y211 particles produced using the nano-emulsion method was in the range of 30–100 nm. The effect of adding 15% Y211 nanoparticles to the superconductor YBCO-123 as flux pinning centers, was investigated, and the transition temperature was reduced by 3 K.  相似文献   

15.
Performance comparisons of laser-diode pumped passively Q-switched intracavity-frequency-doubled Nd:Gd0.19Y0.81VO4 and Nd:Gd0.83Y0.17VO4 lasers at 671 nm are demonstrated for the first time to our knowledge. KTP crystal is used as the frequency doubling material and V:YAG crystal as the saturable absorber with initial transmission of 89%. The dependences of average output power, pulse width, pulse repetition rate, single-pulse energy and peak power on incident pump power are measured and contrasted. The experimental results show that, Nd:Gd0.83Y0.17VO4 laser has more excellent properties than Nd:Gd0.19Y0.81VO4 laser at 671 nm.  相似文献   

16.
In this paper, a facile co-precipitation process for preparing mono-dispersed core–shell structure nanoparticles is reported. The 110 nm SiO2 cores coated with an yttrium aluminum garnet (Y3Al5O12) layer doped with Er3+ were synthesized and the influence of the concentration ratio of [urea]/[metal ions] on the final product was investigated. The structure and morphology of samples were characterized by the X-ray powder diffraction, Fourier transform IR spectroscopy and transmission electron microscopy, respectively. The results indicate that a layer of well-crystallized garnet Y3Al5O12:Er3+ were successfully coated on the silica particles with the thickness of 20 nm. The near infrared and upconversion luminescent spectra of the SiO2@Y3Al5O12:Er3+ powders further confirm that a Y3Al5O12:Er3+ coating layer has formed on the surface of silica spherical particles.  相似文献   

17.
Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)3:Eu phase and subsequent heat treatment at 350 and 600 °C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)3:Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)3:Eu. The strong and intense Raman peak at 489 cm−1 has been assigned to Ag mode, which is attributed to the hexagonal phase of Gd2O3. The peak at ∼360 cm−1 has been assigned to the combination of Fg and Eg modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement.  相似文献   

18.
A series of spherical LiNi0.8Co0.15Ti0.05O2 cathode materials were synthesized through co-oxidation-controlled crystallization method followed by solid-state reaction at different calcination temperatures under oxygen flowing. The crystal structure and particles morphology of the as-prepared powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. All samples correspond to the layered α-NaFeO2 structure with R-3m space group. The LiNi0.8Co0.15Ti0.05O2 prepared at 800 °C presents a better hexagonal ordering structure and better spherical particles and possesses a high tap density of 3.22 g cm?3. Meanwhile, the NCT-2 sample exhibits an advanced electrochemical performance with an initial discharge capacity of 174.2 mAh g?1 and capacity retention of 86.7 % after 30 cycles at 0.2 C.  相似文献   

19.
Although Gd2O3 (gadolinia) nanoparticle is the subject of intense research interest due to its magnetic property as well as controllable emission wavelengths by doping of various lanthanide ions, it is known to be difficult to prepare monodisperse crystalline gadolinia nanoparticles because it requires high temperature thermal annealing process to enhance the crystallinity. In this article, we demonstrate the synthesis of hollow nanoparticles of crystalline Gd2O3 by employing poly(N-vinylpyrrolidone) (PVP) to stabilize the surface of Gd(OH)CO3·H2O nanoparticles and to successively form SiO2 shell as a protecting layer to prevent aggregation during calcinations processes. Silica shells could be selectively removed after calcinations by a treatment with basic solution to give hollow nanoparticles of crystalline Gd2O3. The formation mechanism of hollow nanoparticles could be suggested based on several characterization results of the size and shape, and crystallinity of Gd2O3 nanoparticles by TEM, SEM, and XRD.  相似文献   

20.
Spray pyrolysis method was applied to the preparation of Ce0.6Tb0.4MgAl11O19 green phosphor particles. The characteristics of as-prepared particles such as photoluminescence, crystallinity, and morphology were compared with those of post-treated particles. The as-prepared particles at 1700 °C had higher crystallinity and photoluminescence properties compared with those of post-treated particles. The morphology of as-prepared particles obtained at low temperatures changed from spherical shape to plate-like shape after post-treatment at 1400 °C for 3 h. The particles directly prepared at 1700 °C had the mean size of 0.7 μm and non-aggregation characteristics. This study has demonstrated that without post-treatment processing/annealing, spherical phosphor particles having complex composition could be prepared by a one-step synthesis. Received: 20 December 1999 / Accepted: 25 May 2000 / Published online: 9 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号