首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialylated lipopolysaccharide (LPS) glycoforms from Haemophilus influenzae were characterized by tandem mass spectrometry using a new generation hyphenated mass spectrometer which combines a triple quadrupole and a linear ion trap (Q-Trap). The fragmentation of both protonated and sodiated molecular ions from O-deacylated LPS (LPS-OH) obtained in MS(2) experiments in the positive mode was studied. The MS(2) spectra of protonated ions provided unambiguous evidence for the presence and sequence of sialylated lactosamine present in lacto-N-neotetraose oligosaccharide extensions but not for sialyl-lactose structures whilst fragmentation of sodiated adducts, [M+Na](+), afforded information diagnostic of mono- and disialylated lactose extensions. To study this we used a highly sialylated LPS from a H. influenzae strain capable of sialyl-lactose expression only. We then applied the method to the H. influenzae genome strain, Rd, in which glycoforms containing both sialyl-lactose and sialyl-lacto-N-neotetraose were detected from diagnostic B-ions at m/z 638.2 ([Neu5Ac(1) Hex(2)+Na](+)) and 657.2 ([Neu5Ac(1) Hex(1) HexNAc(1)+H](+)). Unique fragmentation patterns provided the locations and sequences of these oligosaccharide extensions. This is the first time both sialylated lactose and sialylated lacto-N-neotetraose units have been detected and characterized by tandem mass spectrometry in the same molecule. This methodology is of general applicability for determination of common sialylated oligosaccharide extension in bacterial LPS.  相似文献   

2.
A series of isotopically labeled natural substrate analogues (phenyl 5-N-acetyl-α-d-neuraminyl-(2→3)-β-d-galactopyranosyl-(1→4)-1-thio-β-d-glucopyranoside; Neu5Acα2,3LacβSPh, and the corresponding 2→6 isomer) were prepared chemoenzymatically in order to characterize, by use of multiple kinetic isotope effect (KIE) measurements, the glycosylation transition states for Vibrio cholerae sialidase-catalyzed hydrolysis reactions. The derived KIEs for Neu5Acα2,3LacβSPh for the ring oxygen ((18)V/K), leaving group oxygen ((18)V/K), C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.029 ± 0.002, 0.983 ± 0.001, 1.034 ± 0.002, and 1.043 ± 0.002, respectively. In addition, the KIEs for Neu5Acα2,6βSPh for C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.021 ± 0.001 and 1.049 ± 0.001, respectively. The glycosylation transition state structures for both Neu5Acα2,3LacβSPh and Neu5Acα2,6LacβSPh were modeled computationally using the experimental KIE values as goodness of fit criteria. Both transition states are late with largely cleaved glycosidic bonds coupled to pyranosyl ring flattening ((4)H(5) half-chair conformation) with little or no nucleophilic involvement of the enzymatic tyrosine residue. Notably, the transition state for the catalyzed hydrolysis of Neu5Acα2,6βSPh appears to incorporate a lesser degree of general-acid catalysis, relative to the 2,3-isomer.  相似文献   

3.
[reaction: see text] The ubiquity of the sialic acid alpha(2-3) galactose linkage in oligosaccharides of biological relevance necessitates a building block for the incorporation of this motif into oligosaccharides prepared by modular synthesis. The linear synthesis of the sialyl Lewis X tumor-associated antigen (1) has been accomplished in good yield using a sialic acid alpha(2-3) galactose disaccharide building block. The disaccharide building block was synthesized efficiently from readily available galactal by a high-yielding and selective sialylation reaction.  相似文献   

4.
F Y Che  X X Shao  K Y Wang  Q C Xia 《Electrophoresis》1999,20(14):2930-2937
A simple and highly sensitive capillary electrophoresis (CE) method for determining the content of N-acetylneuraminic acid (Neu5Ac) in glycoproteins was developed. Neu5Ac was derivatized with 2-aminoacridone (AMAC) by reductive amination, and the AMAC-Neu5Ac adduct could be readily separated from the other 11 AMAC-derivatized neutral and acidic monosaccharides usually present in glycoproteins by CE in a 0.3 mol/L borate buffer, pH 10.5, and detected at 260 nm. The derivatization of Neu5Ac was achieved at 55 degrees C for 4 h. AMAC-Neu5Ac was stable at 20 degrees C in the dark for at least 12 h while at room temperature it spontaneously converted into another substance with a lower electrophoretic mobility, which was identified as decarboxylated AMAC-Neu5Ac by high performance liquid chromatography - ion trap mass spectrometry (HPLC-ITMS). Concentration and mass of Neu5Ac as low as 1 micromol/L and 35 fmol could be detected. The linear correlation coefficient between the ratio of peak area to migration time of AMAC-Neu5Ac and the concentration of Neu5Ac ranging from 10 to 120 micromol/L was 0.9978 (n=8). This method was successfully applied to the analysis of sialic acid in human urinary trypsin inhibitor (hu-UTI), bovine alpha1-acid glycoprotein (alpha1-AGP) and recombinant human erythropoietin (rhu-EPO). By combination of CE and HPLC-ITMS we found that N-glycolylneuraminic acid (Neu5Gc) was present in bovine alpha1-AGP in addition to Neu5Ac, with a quantity comparable to that of the latter.  相似文献   

5.
Glycans are expected to be one of the potential signal molecules for controlling drug targeting/delivery or long-term circulation of biopharmaceuticals. However, the effect of the carbohydrates of artificially glycosylated derivatives on in vivo dynamic distribution profiles after intravenous injection of model animals remains unclear due to the lack of standardized methodology and a suitable platform. We report herein an efficient and versatile method for the preparation of multifunctional quantum dots (QDs) displaying common synthetic glycosides with excellent solubility and long-term stability in aqueous solution without loss of quantum yields. Combined use of an aminooxy-terminated thiol derivative, 11,11'-dithio bis[undec-11-yl 12-(aminooxyacetyl)amino hexa(ethyleneglycol)], and a phosphorylcholine derivative, 11-mercaptoundecylphosphorylcholine, provided QDs with novel functions for the chemical ligation of ketone-functionalized compounds and the prevention of nonspecific protein adsorption concurrently. In vivo near-infrared (NIR) fluorescence imaging of phosphorylcholine self-assembled monolayer (SAM)-coated QDs displaying various simple sugars (glyco-PC-QDs) after administration into the tail vein of the mouse revealed that distinct long-term delocalization over 2 h can be achieved in cases of QDs modified with α-sialic acid residue (Neu5Ac-PC-QDs) and control PC-QDs, while QDs bearing other common sugars, such as α-glucose (Glc-PC-QDs), α-mannose (Man-PC-QDs), α-fucose (Fuc-PC-QDs), lactose (Lac-PC-QDs), β-glucuronic acid (GlcA-PC-QDs), N-acetyl-β-D-glucosamine (GlcNAc-PC-QDs), and N-acetyl-β-D-galactosamine (GalNAc-PC-QDs) residues, accumulated rapidly (5-10 min) in the liver. Sequential enzymatic modifications of GlcNAc-PC-QDs gave Galβ1,4GlcNAc-PC-QDs (LacNAc-PC-QDs), Galβ1,4(Fucα1,3)GlcNAc-PC-QDs (Le(x)-PC-QDs), Neu5Acα2,3Galβ1,4GlcNAc-PC-QDs (sialyl LacNAc-PC-QDs), and Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc-PC-QDs (sialyl Le(x)-PC-QDs) in quantitative yield as monitored by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses. Live animal imaging uncovered for the first time that Le(x)-PC-QDs also distributed rapidly in the liver after intravenous injection and almost quenched over 1 h in similar profiles to those of LacNAc-PC-QDs and Lac-PC-QDs. On the other hand, sialyl LacNAc-PC-QDs and sialyl Le(x)-PC-QDs were still retained stably in the whole body after 2 h, while they showed significantly different in vivo dynamics in the tissue distribution, suggesting that structure/sequence of the neighboring sugar residues in the individual sialyl oligosaccharides might influence the final organ-specific distribution. The present results clearly visualize the evidence of an essential role of the terminal sialic acid residue(s) for achieving prolonged in vivo lifetime and biodistribution of various glyco-PC-QDs as a novel class of functional platforms for nanomaterial-based drug targeting/delivery. A standardized protocol using multifunctional PC-QDs should facilitate live animal imaging of ligand-displayed QDs using versatile NIR fluorescence photometry without influence of size-dependent accumulation/excretion pathway for nanoparticles (e.g., viruses) >10 nm in hydrodynamic diameter by the liver.  相似文献   

6.
A rapid and efficient one-step conversion of sialyl thioglycosides to sialyl esters was disclosed. Under the promotion of NIS and BF3OEt2, the glycosylation of per-acetylated sialyl thioglycoside with a set of carboxylic acids provided β-sialyl esters as the major products in good to excellent yields within 5 min. Compared with the long-chain alkyl-, aryl- and α,β-unsaturated acids, complete β-selectivities were observed when the short-chain alkyl acids were selected as the coupling partners. The resultant β-selectivity for the glycosylation of the per-acetylated sialyl thioglycoside with acetic acid was compromised when the 5-N,4-O-oxazolidinone protected sialyl thioglycoside was employed as the coupling partner.  相似文献   

7.
Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificity studies and sialidase crystal structural analysis, a number of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA or Neu5Ac2en) analogues with modifications at C9 or at both C5 and C9 were synthesized. Inhibition studies of various bacterial sialidases and human cytosolic sialidase NEU2 revealed that Neu5Gc9N(3)2en and Neu5AcN(3)9N(3)2en are selective inhibitors against V. cholerae sialidase and human NEU2, respectively.  相似文献   

8.
A strategy based on negative ion electrospray ionization tandem mass spectrometry and closed-ring labeling with both 8-aminopyrene-1,3,6-trisulfonate (APTS) and p-aminobenzoic acid ethyl ester (ABEE) was developed for linkage and branch determination of high-mannose oligosaccharides. X-type cross-ring fragment ions obtained from APTS-labeled oligosaccharides by charge remote fragmentation provided information on linkages near the non-reducing terminus. In contrast, A-type cross-ring fragment ions observed from ABEE-labeled oligosaccharides yielded information on linkages near the reducing terminus. This complementary information provided by APTS- and ABEE-labeled oligosaccharides was utilized to delineate the structures of the high-mannose oligosaccharides. As a demonstration of this approach, the linkages and branches of high-mannose oligosaccharides Man(5)GlcNAc(2), Man(6)GlcNAc(2), Man(8)GlcNAc(2), and Man(9)GlcNAc(2) cleaved from the ribonuclease B were assigned from MS(2) spectra of ABEE- and APTS-labeled derivatives.  相似文献   

9.
Permethylated oligosaccharides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) using a reflectron time-of-flight instrument in the post-source decay (PSD) mode. Under these ionization conditions, such derivatives yield intense signals corresponding to sodium or potassium cationized molecular species. Fragments observed in the PSD spectra result exclusively from cleavage of glycosidic bonds, preferentially at N-acetylhexosamine residues. A systematic study was carried out on a series of permethylated oligosaccharides to allow rationalization of the fragmentation processes. Fragments originating from both the reducing and the non-reducing ends of the oligosaccharide yield information on sequence and branching. Moreover, glycosyl residues linked in position 3 of HexNAc units give rise to a highly specific elimination process, which allows unambiguous assignment of (1-3) interglycosidic linkages. Special attention was paid to the structural analysis of oligosaccharides carrying the commonly encountered fucosyl and sialyl end-caps. In the case of sialylated residues, a targeted methodology involving desialylation and specific CD3-labeling of the nascent free hydroxyl groups was developed to mark the initial location of sialic acid residues along the oligosaccharide backbone. As accurate mass determination of fragment ions is essential for their assignment, a simplified protocol for the calibration in the PSD mode is described. This procedure allows the determination of the correction function parameters required to process the data for an instrument that employs post-acceleration detection. MALDI/PSD-MS of permethylated oligosaccharides, by providing structural information at the low picomole level, appears to be a valuable complement, or an alternative, to the techniques currently in use for carbohydrate structural analysis.  相似文献   

10.
Planarial species are of especial interest to biologists due to the phenomenon of pluripotency and, in comparison to other developmental processes, it can be hypothesised that glycan-lectin interactions may play a role. In order to examine the N-glycans of one of these organisms, Dugesia japonica, peptide:N-glycosidase A was employed and the released glycans were subject to pyridylamination, HPLC and mass spectrometric analysis. A range of oligomannosidic glycans was observed with a trimethylated Man(5) GlcNAc(2) structure being the dominant species. Three glycans were also observed to contain deoxyhexose; in particular, a glycan with the composition Hex(4) HexNAc(2) Fuc(1) Me(2) was revealed by exoglycosidase digestion, in combination with MS/MS, to contain a galactosylated core α1,6-fucose residue, whereas this core modification was found to be capped with a methylhexose residue in the case of a Hex(5) HexNAc(2) Fuc(1) Me(3) structure. This is the first report of these types of structures in a platyhelminth and indicates that the 'GalFuc' modification of N-glycans is not just restricted to molluscs and nematodes.  相似文献   

11.
Human lung epithelial cells natively offer terminal N‐acetylneuraminic acid (Neu5Ac) α(2→6)‐linked to galactose (Gal) as binding sites for influenza virus hemagglutinin. N‐Glycolylneuraminic acid (Neu5Gc) in place of Neu5Ac is known to affect hemagglutinin binding in other species. Not normally generated by humans, Neu5Gc may find its way to human cells from dietary sources. To compare their influence in influenza virus infection, six trisaccharides with Neu5Ac or Neu5Gc α(2→6) linked to Gal and with different reducing end sugar units were prepared using one‐pot assembly and divergent transformation. The sugar assembly made use of an N‐phthaloyl‐protected sialyl imidate for chemoselective activation and α‐stereoselective coupling with a thiogalactoside. Assessment of cytopathic effect showed that the Neu5Gc‐capped trisaccharides inhibited the viral infection better than their Neu5Ac counterparts.  相似文献   

12.
Ando T  Li SC  Ito M  Li YT 《Journal of chromatography. A》2005,1078(1-2):193-195
This paper reports a facile method for the preparation of lyso-GM1 [Gal beta1-->3GalNAc beta1--> 4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-sphingosine] and lyso-GM2 [GalNAc beta1-->4(Neu5Ac alpha2-->3)Gal beta1-->4Glc beta1-->sphingosine], respectively, from GM1 [Galbeta1-->3GalNAc beta1-->4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-Cer] and GM2[GalNAc beta1-->4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-Cer], using sphingolipid ceramide deacylase and high performance anion-exchange chromatography (HPAEC). The enzymatically released lyso-GM1 and/or lyso-GM2 was effectively separated from its parent ganglioside by HPAEC using a Mono Q HR 5/5 column with an Amersham Biosciences fast protein liquid chromatography system. The yield was almost quantitative and the separation completed in approximately 3 h. This method is more convenient and effective than the conventional method using alkaline hydrolysis and silicic acid chromatography to generate and purify lyso-gangliosides.  相似文献   

13.
To investigate the possibility of structural assignment based on negative-ion MS2 spectral matching, three isomeric pairs of 2-aminopyridine (PA)-derivatized non-fucosylated, fucosylated, and sialylated oligosaccharides (complex type N-glycans) were analyzed using high-performance liquid chromatography/ion trap mass spectrometry (HPLC/ITMS) with a sonic-spray ionization (SSI) source. In the SSI negative-ion mode the deprotonated molecule [M-2H]2- becomes prominent. Negative-ion MS2 spectra derived from such ions contain many fragment types (B and Y, C and Z, A, and D) and therefore are more informative than the positive-ion MS2 spectra derived from [M+H+Na]2+ ions, which usually consist mainly of B and Y fragment ions. In particular the internal ions (D- and E-type ions) provided useful information about the alpha1-6 branching patterns and the bisecting GlcNAc residue. Spectral matching based on the correlation coefficients between negative-ion MS2 spectra was performed in a manner similar to the positive-ion MS2 spectral matching previously reported. It was demonstrated that negative-ion MS2 spectral matching is as useful and applicable to the structural assignment of relatively large non-fucosylated, fucosylated, and sialylated PA-oligosaccharide isomers as its positive-ion counterpart.  相似文献   

14.
Purified olive pulp glucuronoxylans, with a Xyl/GlcA ratio of 7:1, were subjected to mild acid hydrolysis and the mixture of oligosaccharides obtained was fractionated by size exclusion chromatography. One elution fraction representative of low molecular weight oligosaccharides was analysed by mass spectrometry using matrix-assisted laser desorption/ionisation (MALDI) and electrospray ionisation (ESI) as ionisation methods, in the positive mode. Both types of spectra showed cationised molecules [M + Na](+) of xylo-oligosaccharides in a range below m/z 1,000. The xylo-oligosaccharide structures identified were series of neutral oligosaccharides of xylose (Xyl(n), n = 3-7), of acidic oligosaccharides substituted by one glucuronic acid (Xyl(n)GlcA, n = 3-5) and by two glucuronic acid residues (Xyl(n)GlcA(2), n = 2 and 3), and also of acidic oligosaccharides substituted with one 4-O-methylglucuronic acid residue (Xyl(n)meGlcA, n = 2-4). The proposed structures were confirmed by tandem mass (MS/MS) spectra obtained using collision induced dissociation of the molecular ions. Fragmentation of cationised adducts of neutral Xyl(n) yielded C- and A-type fragments, while ammonium adducts mainly yielded B-type fragments. The fragmentation of the sodium adducts of acidic oligosaccharides (Xyl(n)meGlcA, Xyl(n)GlcA) resulted in the loss of the substituting residue (GlcA or meGlcA) as the predominant fragment, while the corresponding ammonium adducts yielded B-type fragments.  相似文献   

15.
The fragmentation of peptides and oligosaccharides in the gas phase was investigated by means of electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry coupled with dissociation by a laser-cleavage infrared multiphoton dissociation (IRMPD) technique. In this technique, an IR free-electron laser is used as a tunable source of IR radiation to cause cleavage of the ionized samples introduced into the FTICR cell. The gas-phase IRMPD spectra of protonated peptides (substance P and angiotensin II) and two sodiated oligosaccharides (sialyl Lewis X and lacto-N-fucopentaose III) were obtained over the IR scan range of 5.7-9.5 microm. In the IRMPD spectra for the peptide, fragment ions are observed as y/b-type fragment ions in the range 5.7-7.5 microm, corresponding to cleavage of the backbone of the parent amino acid sequence, whereas the spectra of the oligosaccharides have major peaks in the range 8.4-9.5 microm, corresponding to photoproducts of the B/Y type.  相似文献   

16.
Glycosylation of various galactose derivatives with O-acetylated sialic acid N-phenyltrifluoroacetimidate as the donor was investigated. Efficient alpha(2,3)sialylation of galactose, with up to 73% yield and 8.4:1 stereoselectivity, was realized when 2,3,4-unprotected galactose derivatives and TBSOTf were used as acceptors and promoter, respectively. Sialylation of 2-(trimethylsilyl)ethyl 6-O-tert-butyldiphenylsilyl-beta-D-galactopyranoside (3f) gave the best result, and the resultant Neu5Ac alpha(2-->3)Gal disaccharide was successfully used in the synthesis of ganglioside GM3.  相似文献   

17.
Glycopeptides derived from a lysylendopeptidase digest of commercially available human transferrin were analyzed by nano-flow liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS), which permitted the carbohydrate profiles at Asn432 and Asn630 to be determined. Both are located in a well-known motif for N-glycosylation, Asn-Xaa-Ser/Thr. The contents of the carbohydrates at each site were significantly different from each other, and consisted of a variety of minor types of oligosaccharides in addition to the major one, a biantennary complex-type oligosaccharide. Nano-flow ESI tandem mass spectrometry (MS/MS) of the glycopeptides (Cys421-Lys433 and Ile619-Lys646) containing these two sites yielded predominantly ions originating from the non-reducing termini (oxonium ions) and reducing terminus, resulting from cleavage of the glycosidic bonds of the carbohydrate moieties; this permitted the structural read-out of a small minority of the carbohydrate moieties. In particular, the observation of oxonium ions at m/z 512.2 and 803.2 is useful for probing outer non-reducing terminal fucosylation, which represented carbohydrate structures consisting of Hex, dHex, and HexNAc, and NeuNAc, Hex, dHex, and HexNAc, respectively, from which the Lewis X structure (Galbeta1-4(Fucalpha1-3)GlcNAc) was readily deduced. Moreover, fucosylation at the reducing-terminal GlcNAc (Fucalpha1-6GlcNAc) specifically occurred at Asn630, as demonstrated by treatment of the glycopeptides with alpha1-3/4-L-fucosidase.  相似文献   

18.
To explore new inhibitors of the sialidase of human parainfluenza virus type 1 (hPIV-1), a series of novel Neu5Ac2en derivatives were synthesized. Thus, 8,9-O-isopropylidene-4-O-2-propynyl-Neu5Ac2en methyl ester 8 was subjected to a Sonogashira coupling reaction with a variety of heteroaryl halides to produce a series of 4-O-(3-heteroaryl-2-propynyl) compound 9. Treatment of 9 with 80% acetic acid followed by alkaline hydrolysis afforded deprotected Neu5Ac2en compounds. The 4-epi-analogs of this type of Neu5Ac2en were synthesized in a similar manner. Compound 5d showed the most potent inhibitory activity (IC50 1.2 μM) against hPIV-1 sialidase.  相似文献   

19.
An efficient and practical method for the large-scale synthesis of an anti-inflammatory glycocluster having seven sialyl Lewis X (SLeX) residues was established on the basis of chemical and enzymatic strategy from β-cyclodextrin (β-CD) as a key starting scaffold material. A key intermediate, β-CD derivative having seven N-acetyl-d-glucosamine (GlcNAc) residues [(GlcNAc)7CD], was prepared by a coupling reaction with heptakis 6-deoxy-6-iodo-β-cyclodextrin and sodium thiolate containing a GlcNAc residue. Subsequent sugar elongation reactions of (GlcNAc)7CD proceeded smoothly by means of β-1,4-galactosyltransferase, α-2,3-sialyltransferase, and α-1,3-fucosyltransferase V in the presence of the corresponding sugar nucleotides (UDP-Gal, CMP-Neu5Ac, and GDP-Fuc) and allowed to give a mono-dispersed glycodendrimer (Mw=7924.5, calcd for C301H490N21O196S7Na7; MALDI-TOF MS, m/z 7946 [M+Na]+) that completely substituted with seven SLeX branches at C-6 positions in excellent overall yield (74%, 3 steps). Hyper-branched glycodendrimer, (SLeX)7CD, exhibited highly amplified inhibitory effect on the interaction of E-selectin with SLeXn-BSA immobilized on the sensor chip by means of surface plasmon resonance method.  相似文献   

20.
Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides   总被引:2,自引:0,他引:2  
The tumor associated Tn (GalNAcalpha(1-1)-Thr/Ser)- and T (Galbeta(1-3)-GalNAcalpha(1-1)Thr/Ser)-antigens and their sialylated derivatives are present on the surface of many cancer cells. Preparative synthesis of these sialylated T- and Tn-structures has been achieved mainly from a chemical synthetic approach due to the lack of the required glycosyltransferases. We demonstrate a flexible and efficient chemoenzymatic approach for using recombinant sialyltransferases including a chicken GalNAcalpha2,6-sialyltransferase (chST6GalNAc I) and a porcine Galbeta(1-3)GalNAcalpha-2,3-sialyltransferase (pST3Gal I). Using these enzymes, the common O-linked sialosides Neu5Acalpha(2-6)GalNAcalpha(1-1)Thr, Galbeta(1-3)[Neu5Acalpha(2-6)]GalNAcalpha(1-1)Thr, Neu5Acalpha(2-3)Galbeta(1-3)GalNAcalpha(1-1)Thr, and Neu5Acalpha(2-3)Galbeta(1-3)[Neu5Acalpha(2-6)]GalNAcalpha(1-1)Thr were readily prepared at preparative scale. The chST6GalNAc I was found to require at least one amino acid (Thr/Ser) for optimal activity, and is thus an ideal catalyst for synthesis of synthetic glycopeptides and glycoconjugates with O-linked glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号